1   2   3   4   5   6   7   8   9   ...   14
Ім'я файлу: Генетика.docx
Розширення: docx
Розмір: 197кб.
Дата: 16.05.2022
скачати
Пов'язані файли:

1. Предмет, завдання генетики людини і медичної генетики.

Медична генетика вивчає закономірності успадкування і мінливості ознак співвідносно до патології людини.

Генетику людини умовно поділяють на антропогенетику, що вивчає спадковість і мінливість нормальних ознак людського організму, і медичну генетику, яка вивчає його спадкову патологію (хвороби, дефекти, потворність та ін.).

Основні завдання медичної генетики:

захист людини від ураження спадкового матеріалу і розвитку спадкових хвороб; вивчення спадкових хвороб і синдромів; використання генно-інженерних методів створення вакцин з метою запобігання інфекційних хвороб; визначення ролі спадковості і середовища у виникненні неспадкових форм патології.

Головна мета медичної генетики полягає в розробці шляхів збереження і продовження життя людини, оздоровлення умов її існування, виявлення екологічних чинників, які призводять до захворювання, запобігання екогенетичних хвороб

У генетиці людини широко застосовуються такі методи, як: 1) вивчення культур тканин; 2) статистичний збір матеріалу щодо поширення окремих ознак у різних популяціях; 3) вивчення родоводів (генеалогій) окремих сімей і груп, родинно пов'язаних сімей (рис. 1.981: 4) порівняльне вивчення монозиготних і дизиготC них близнюків..

2. Хромосомні та геномні рівні організації спадкового матеріалу.

Геномний рівень організації спадкового матеріалу, який об'єднує всю сукупність хромосомних генів, еволюційно склався структурою, яка характеризується відносно більшою стабільністю, ніж генний і хромосомний рівні.

Результатом функціонування геному є формування фенотипу цілісного організму. У зв'язку з цим фенотип організму не можна представляти як просту сукупність ознак і властивостей, це організм у всьому різноманітті його характеристик на всьому протязі індивідуального розвитку. Таким чином, підтримання сталості організації спадкового матеріалу на геномном рівні має першорядне значення для забезпечення нормального розвитку, організму і відтворення у особини в першу чергу видових характеристик.У той же час допустимість рекомбінації одиниць спадковості в генотипах особин обумовлює генетичну різноманітність їх, що має важливе еволюційне значення. Мутаційні зміни, які реалізуються на геномномному рівні організації спадкового матеріалу, - мутації регуляторних генів, що володіють широкою плейотропною дією, кількісними змінами доз генів, транслокацією та транспозицією генетичних одиниць, що впливають на характер експресії генів, нарешті, можливість включення в геном чужорідної інформації при горизонтальному перенесенні нуклеотидних послідовностей між організмами різних видів, - опиняючись іноді еволюційно перспективними, ймовірно, є основною причиною прискорення темпів еволюційного процесу на окремих етапах історичного розвитку живих форм на Землі.

Хромосомний рівень організації спадкового матеріалу характеризується особливостями морфології і функцій хромосом. Роль хромосом у передачі спадкової інформації була доведена завдяки:1) відкриття хромосомного визначення статі,2) встановлення груп зчеплення генів, відповідних числу хромосом,3) побудови генетичних і цитологічних карт хромосом.У ДНК-вірусів, бактерій, синьо-зелених водоростей, а також у самореплицирующихся органелах клітин еукаріот (пластиди, мітохондрії, кінетопласт та ін) спадковий матеріал представлений єдиною хромосомою, яка являє собою голу двуспіральную молекулу ДНК.У більшості РНК-вірусів хромосома представлена ​​голою однонитевой молекулою РНК, наприклад у ВІЛ. Транскрипція і реплікація генетичної інформації здійснюється за участю ферментів клітини-господаря.Хромосоми прокаріот представлені голою кільцевою молекулою ДНК. Прокаріоти містять тільки по одній хромосомі і є гаплоїдії. Молекулярна маса ДНК прокаріот відповідає приблизно 2000 структурних генів, довжиною близько 1 500 пар азотистих основ. Гени розташовуються лінійно і несуть інформацію про структуру 3-х - 4,5 тисяч різних білків.Хромосоми еукаріот, на відміну від хромосом прокаріотів, побудовані з нуклеопротеїду, головними компонентами якого є ДНК і два типи білків - гістонових (основних) і негістонових (кислих) білків. Встановлено, що в хромосомах еукаріот (за винятком політенних хромосом) є лише одна безперервна нитка ДНК, що представляє єдину гігантську двуспіральную молекулу, що складається із сотень мільйонів пар нуклеотидів. Довжина ДНК в хромосомі може досягати декількох сантиметрів.

3. Хроматин:структурна організація, еухроматин та гетеро хроматин.

Хромати́н — комплекс молекул ДНК та специфічних білків, що складає хромосоми.

В клітинах еукаріотів хроматин знаходиться в ядрі, а в клітинах бактерій та архей — у нуклеоїді. Основні білки, що входять до складу хроматину еукаріотів та архей — гістони; бактерії, що не мають гістонів, мають менш щільно упакований хроматин.

Хроматин, нуклеопротеїд клітинного ядра, що становить основу хромосом. До складу хроматину входять: ДНК (30-40% по масі), гістони (30-50%), негістонові білки (4-33%) і РНК. Кількість негістонових білків, РНК, а також розміри молекул ДНК коливаються в широких межах залежно від методу виділення хроматину і природи об'єкта.

Залежно від ступеня конденсації (щільності упаковки) і активності хроматину в інтерфазі розрізняють гетерохроматин і еухроматин

Гетерохроматин сильно ущільнений і генетично неактивний. Здебільшого до 90 % хроматину знаходиться саме в такій формі. Гетерохроматин буває конститутивний (структурний) і факультативний. Якщо для факультативного гетерохроматину конденсований стан - явище тимчасове, наступає як наслідок інактивації хроматину, наприклад, в ході розвитку або диференціювання, то конститутивний гетерохроматин конденсований завжди. 

Еухроматин-малоконденсований, деспіралізований. Тому під електронним мікроскопом він виявляється у вигляді світлих ділянок ядра.

Еухроматин відрізняється від гетерохроматину менш щільною упаковкою хромосом, його матеріалу, великою кількістю негістонових білків і ін.. Може інактивуватися і набувати властивості факультативного гетерохроматину.Структуру хроматину формує елементарна фібрила діаметром 10 нм. Для неї відомі 4 рівня укладання в більш складні структури.

4. Аутосоми та гетерохромосоми. Статевий хроматин

X і Y - хромосоми називаються статевими хромосомами, або гетерохромосомами. Інші хромосоми з даного набору, що є однаковими для обох статей, називаються аутосомами.

Чоловіки мають X- і Y -хромосоми і 22 пари аутосом. Жінки мають дві Х-хромосоми і 22 пари аутосом. Статеві хромосоми розподіляються при мейозі так само, як і інші хромосоми. 

Стать майбутньої дитини визначається під час запліднення яйцеклітини. Якщо яйце запліднене сперматозоїдом, що містить YCxpoC мосому, зигота буде мати X і Y -хромосоми і дасть початок розвитку чоловічої особини. Якщо яйце запліднене сперматозоїдом, що містить Х- хромосому, то зигота буде мати дві Х-хромосоми, що зумовить розвиток жіночої особини.

Статевий хроматин - генетично інактивована Х-хромосома, яка знаходиться в гетеропікнотичному стані і міститься в ядрах клітин жіночої статі багатьох тварин і у людини.

5. Каріотип людини. Морфо-функціональна характеристика та класифікація його хромосом.

Каріотип - сукупність хромосом клітини, яка характеризується їх числом, розмірами і формою.

Хромосоми можуть перебувати в двох структурно-функціональних станах: в конденсованому (спіралізованому) та деконденсованому (деспіралізованому). Зовнішній вигляд хромосом істотно змінюється протягом клітинного циклу: протягом інтерфази хромосоми локалізовані в ядрі, як правило, деспіралізовані й важкодоступні для спостереження, тому для визначення каріотипу використовуються клітини в одній із стадій їх поділу - метафазі мітозу.

За Денверською класифікацією (Денвер, США, 1960 р.) всі аутосоми людини поділяються на 7 груп залежно від довжини хромосом і розміщення центромери.

Група 1-3 (А): великі хромосоми, які чітко відрізняються одна від одної; центромери розташовані посередині.

Група 4-5 (В): великі хромосоми, які мало відрізняються одна від одної; центромери зміщені до одного з кінців хромосоми.

Група 6-12 (С): хромосоми середніх розмірів, мало різняться між собою; центромери розташовані ближче до одного з кінців. Найбільша за довжиною з цієї групи хромосом- 6-а, вона схожа з Х-хромосомою.

Група 13-15 (D): хромосоми середніх розмірів; центромери майже повністю зміщені до одного з кінців хромосоми (акроцентричні хромосоми). У всіх трьох хромосом виявлені супутники.

Група 16-18 (Е): короткі хромосоми; у 16-ї хромосоми центромера розташована майже посередині, у 17-ї і 18-ї хромосом центромери зміщені.

Група 19-20 (F): маленькі (короткі) хромосоми; центромери розташовані посередині. Група 21-22 (G): найменші хромосоми; центромери знаходяться на кінцях хромосом (акроцентричні хромосоми). 21-а хромосома має сателіт на короткому плечі. З хромосомами цієї групи схожа t Y-хромосома.

6. Організації потоку біологічної інформації в клітині

Клітини складаються з білків, на частку яких припадає майже половина сухої речовини. Білки визначають структуру, форму і функції клітини. Відомо понад 170 амінокислот, проте тільки 20 з них визначають поліпептидну молекулу.

Спадкова інформація ДНК записана в лінійній послідовності нуклеотидів. Передача (реплікація) інформації розпочинається поділом двох комплементарних ланцюгів, на кожному з яких утворюється нова молекула ДНК. Під час транскрипції розгорнутого ланцюга з певних фрагментів ДНК утворюється РНК. Такий первинний транскрипт РНК значно довший за дозрілу молекулу РНК. Очевидно, що значна частина первинного транскрипту РНК руйнується в ядрі і тільки 1/20 його надходить до цитоплазми. Це і є власне мРНК, або іРНК. Молекули РНК - одноланцюгові, вони коротші за ДНК. Кількість утворених молекул РНК з певної ділянки ДНК контролюється регуляторними білками. Отже, ДНК направляє синтез специфічних РНК.

Транскрипція генетичної інформації з ДНК на РНК і є першим кроком потоку біологічної інформації. РНК-продукт не залишається комплементарно зв'язаним з ДНК-матрицею. Щойно після синтезу РНК подвійна спіраль ДНК відновлюється. Наступний крок - трансляція мРНК. В еукаріотичних клітинах тривалість існування цієї молекули різна - від 30 хв. до 10 год.

Молекула мРНК покидає ядро, виходить у цитоплазму і скеровує синтез певного білка на рибосомах. Перенесення інформації від мРНК до білка ґрунтується на принципі комплементарності основ, як і перенесення генетичної інформації від ДНК до ДНК, або від ДНК до РНК.

Отже, генетична інформація записана в лінійній послідовності нуклеотидів ДНК. За участі РНК ця інформація надходить (транслюється) до рибосом з утворенням поліпептиду з амінокислот.

 

Потік біологічної інформації відбувається такими шляхами:



7. ДНК, роль у зберіганні і перенесенні інформації, хімічна будова, просторова організація, видова специфічність

Макромолекула ДНК - це два довгі полімерні ланцюги, що складаються з мономерів дезоксирибонуклеотидів, тісно з'єднаних між собою. Нитки ДНК з'єднуються водневими зв'язками між азотистими основами двох ланцюгів і утворюють подвійну спіраль ДНК.

Хімічна будова. ДНК - це полімерна молекула, мономерами в якій є нуклеотиди. Нуклеотид складається з: 1) азотистої основи; 2) моносахариду дезоксирибози (в нуклеотидах РНК C рибози); 3) залишку фосфорної кислоти. Азотисті основи бувають двох типів: пуринові C аденін (А) і гуанін (Г) і піримідинові C тимін (Т) і цитозин (Ц). . Ця дволанцюжкова молекула утворює спіраль. В цілому структура молекули ДНК отримала назву «подвійної спіралі».

Видова специфічність ДНК. За співвідношеням (А+Т) і (Г+Ц) представники різних видів різняться між собою, причому у тварин переважає пара А+Т, а у мікроорганізмів співвідношення (А+Т) і (Г+Ц) однакове. Ці явища використовують як один із генетичних критеріїв визначення виду. У цьому полягає індивідуальна специфічність ДНК.

Просторова організація ДНК. Молекула ДНК може існувати в різній конфігурації залежно від навколишніх умов. Відомо декілька форм ДНК: а) В-форма - має стандартну структуру відповідно до моделі молекули Уотсона і Кріка і в нормальних фізіологічних умовах є основним структурним типом; б) А-форма - виявлена у зневодненому середовищі, при високому вмісті калію і натрію. Така ДНК має дещо змінену спіралізацію; в) С-форма - має менше основ на один виток, а значить інші - фізичні характеристики; г) Z-форма -на відміну від інших форм, закручена вліво. Деякі форми при зміні фізіологічних умов можуть переходити одна в одну, що додатково регулює роботу генів. Знання структури ДНК дозволило зрозуміти суть багатьох молекулярно-генетичних процесів.

Правила Е. Чаргаффа.

I. Молярна частка пуринів (аденіну - А і гуаніну - Г) дорівнює молярній частці піримідинів (цитозину - Ц і тиміну - Т):

А+Г=Ц+Т, або А+Г/Ц+Т=1

II. Кількість аденіну і цитозину дорівнює кількості гуаніну і тиміну:

А+Ц=Г+Т, або А+Ц/Г+Т=1

III. Кількість аденіну дорівнює кількості тиміну, а кількість гуаніну дорівнює кількості цитозину:

А=Т, або А/Т=1, Г=Ц, або Г/Ц=1

IV. Відношення суми молярних концентрацій Г+Ц до суми молярних концентрацій А+Т у різних видів значно змінюється: Г+Ц/А+Т названо коефіцієнтом специфічності. Для бактерій коефіцієнт специфічності дорівнює 0,45-2,8, для вищих рослин, тварин і людини - 0,45-0,94.

V. Існують види ДНК, в яких А+Т>Г+Ц (АТ- тип) та ДНК, в яких А+Т<Г+Ц (ГЦ-тип). АТ-тип ДНК характерний для вищих рослин, тварин і людини. ГЦ-тип властивий грибам, бактеріям, вірусам.

Просторова організація ДНК. Молекула ДНК може існувати в різній конфігурації залежно від навколишніх умов.

Отже, в молекулі ДНК можна виділити первинну структуру - послідовність нуклеотидів у ланцюгу, вторинну структуру - два комплементарні антипаралельні ланцюги, з'єднані водневими зв'язками, і третинну структуру - тривимірну спіраль. Зазначимо, що: а) геометрія спіралі ДНК залежить від послідовності нуклеотидів; б) значна частина ДНК не кодує білків або РНК; в) кожний ген - це складна функціонально-активна одиниця, призначена для регульованого синтезу РНК.

8. РНК, роль у зберіганні і перенесенні інформації, хімічна будова, просторова організація, видова специфічність.

РНК (рибонуклеїнова кислота) — клас нуклеїнових кислот, лінійних полімерів нуклеотидів, до складу яких входять залишок фосфорної кислоти, рибоза (на відміну від ДНК, що містить дезоксирибозу) і азотисті основи — аденін, цитозин, гуанін і урацил (на відміну від ДНК, що містить замість урацила містить тимін).

РНК містяться головним чином в цитоплазмі клітин. Ці молекули синтезуються в клітинах всіх клітинних живих організмів, а також містяться в віроїдах та деяких вірусах. Основні функції РНК в клітинних організмах — шаблон для трансляції генетичної інформації в білки та поставка відповідних амінокислот до рибосом

Молекули РНК мають багато спільного зі структурою ДНК, але відрізняються низкою ознак: а) вуглеводом РНК є рибоза, б) РНК не містить тиміну, його місце в молекулі займає урацил, в) РНК - одноланцюгова молекула, г) правила Чаргаффа не виконуються.


Типи РНК. На основі розміру, структури і функції молекул розрізняють три типи РНК, характерних як для прокаріотів, так і для еукаріотів.

Інформаційна РНК (іРНК). ЇЇ молекули утворюються на певних ділянках ДНК, мають назву структурних генів, у вигляді комплементарної копії ділянки одного з її ланцюгів. Вони несуть закодовану інформацію первинної структури білків у цитоплазму, де прикріплюються до рибосом і реалізують цю інформацію.Інформаційна РНК є матрицею для синтезу поліпептидів (білків), тому її називають також матричною. Матрична РНК є шаблоном, на якому будуються поліпептиди відповідно до закладеної генетичної інформації. Звичайно, вона несе інформацію про синтез тільки однієї молекули білка - це так звана моноцистронна іРНК.

Транспортна РНК (тРНК). Молекули тРНК утворюються на спеціальних генах. Транспортні РНК короткі, однониткові, мають форму листка конюшини завдяки комплементарному сполученню основ на різних ділянках ланцюга, складаються з невеликого числа нуклеотидів - 75-90. Від загальної маси РНК на тРНК припадає близько 10-15 %. Молекули тРНК переносять до місць синтезу білків тільки відповідні їм амінокислоти з цитоплазми. Кожній амінокислоті відповідає своя тРНК внаслідок особливостей нуклеотидної послідовності та просторової структури. Молекули тРНК мають чотири важливі ділянки: а) транспортну; б) антикодон; в) ділянку приєднання фермента; г) ділянку зв'язування з рибосомою.

Антикодон складається з п'яти нуклеотидів. У центрі - три специфічних рибонуклеотиди (триплет). Азотисті основи антикодона мають комплементарний триплет на ланцюгу іРНК, цей триплет називається кодоном. У період синтезу білка антикодон знаходить відповідний йому кодон на іРНК і тимчасово приєднується до нього водневими зв'язками. Ділянка приєднання ферменту - це спеціальна частина молекули тРНК для специфічного зв'язування з ферментом аміноацил-тРНК-синтетазою, що каталізує приєднання амінокислоти до молекули тРНК.

Ділянка зв'язування з рибосомою - особлива частина молекули (певна послідовність нуклеотидів) тРНК, що потрібна для прикріплення до рибосоми.

Рибосомальна РНК утворює структурний каркас рибосоми, їй належить важлива роль у процесі синтезу білків. Рибосомальна РНК забезпечує зв'язування іРНК з рибосомами за допомогою певних послідовностей нуклеотидів. Таким чином встановлюється початок і рамка зчитування інформації з іРНК. Багато білків рибосом виконують не тільки структурну, але й ферментативну функцію.

  1   2   3   4   5   6   7   8   9   ...   14

скачати

© Усі права захищені
написати до нас