Ім'я файлу: Реферат з хімії.docx
Розширення: docx
Розмір: 60кб.
Дата: 15.12.2020
скачати



МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ДНІПРОПЕТРОВСЬКИЙ ДЕРЖАВНИЙ АГРАРНО-ЕКОНОМІЧНИЙ

УНІВЕРСИТЕТ

Факультет агрономічний Кафедра хімії

РЕФЕРАТ

з дисципліни «Хімія»

«Карбон»

Виконав

студент групи А-2-20а

Ромащенко Тарас

Перевірив ст.викладач

Бойко Юлія Володимирівна

Дніпро 2020

Зміст

  1. Вступ_________________________________________________________3

  2. Поширення в природі.___________________________________________4

  3. Фізичні й хімічні властивості.____________________________________ 5

  4. Народногосподарське значення. Карбон в організмі.__________________8

  5. Висновки_____________________________________________________ 11





Вступ

Карбон (лат. Carboneum), С - хімічний елемент IV групи періодичної системи Менделєєва. Відомі два стабільних ізотопи 12 С(98,892 %) і 13С (1,108%).

Карбон відомий з глибокої старовини. Деревне вугілля служило для відновлення металів з руд, алмаз - як коштовний камінь. Значно пізніше стали застосовуватися графіт для виготовлення олівців.

У 1778 Д.О. Шеєле, нагріваючи графіт з селітрою, виявив, що при цьому, як і при нагріванні вугілля з селітрою, виділяється оксид карбону (IV) - вуглекислий газ. Хімічний склад алмаза був встановлений внаслідок дослідів А. Лавуаз'є (1772) по вивчення горіння алмаза на повітрі і досліджень С. Теннанта (1797), що довело, що однакові кількості алмаза і вугілля дають при окисленні рівні кількості вуглекислого газу. Карбон як хімічний елемент був визнаний тільки в 1789 А. Лавуазье. Латинську назву сarboneum карбон отримав від сarbo.

ПОШИРЕННЯ В ПРИРОДІ

Карбон (лат. Carboneum, C) — хімічний елемент IV групи періодичної системи Менделєєва. Відомі два стабільні ізотопи І2С (98,892 %) і ІЗС (1,108 %).

Вуглець відомий із глибокої давнини. Деревне вугілля служило для відновлення металів із руд, алмаз — як дорогоцінний камінь. Значно пізніше почав застосовуватися графіт для виготовлення тиглів та олівців.

У 1778 p. K. Шеєле, нагріваючи графіт із селітрою, виявив, що при цьому, як і при нагріванні вугілля із селітрою, виділяється вуглекислий газ. Хімічний склад алмаза був встановлений у результаті дослідів А. Лавуазьє (1772) із вивчення горіння алмаза на повітрі й у результаті досліджень С. Теннанта (1797), який довів, що однакові кількості алмаза й вугілля дають при окисненні рівні кількості вуглекислого газу. Карбон як хімічний елемент був визнаний тільки в 1789 р. А. Лавуазьє. Латинську назву carboneim Карбон отримав від carbo — вугілля.

Середній вміст Карбону в земній корі складає 2,3 • 10-2 % за масою. Карбон накопичується у верхній частині земної кори (біосфері): у живій речовині 18 % Карбону, у деревині — 50 %, у кам'яному вугіллі — 80 %, у нафті — 85 % в антрациті — 96 %. Значна частина Карбону літосфери зосереджена у вапняках і доломітах.

Число власних мінералів Карбону — 112, винятково велике число органічних сполук Карбону — вуглеводні й їхні похідні.

З накопиченням Карбону в земній корі пов'язані нагромадження і багатьох інших елементів, що сорбуються органічною речовиною й осаджуються у вигляді нерозчинних карбонатів і т. ін.

У порівнянні із середнім умістом Карбону в земній корі, людство у винятково великих кількостях видобуває Карбон із надр (вугілля, нафта, природний газ), тому що ці копалини — основні сучасні джерела енергії.

Карбон широко розповсюджений також у космосі; на Сонці він займає четверте місце після Гідрогену, Гелію й Кисню.

ФІЗИЧНІ Й ХІМІЧНІ ВЛАСТИВОСТІ

Відомі чотири кристалічні модифікації вуглецю: графіт, алмаз, карбін і лонсдейліт.

Графіт — сіро-чорна, непрозора, жирна на дотик, дуже м'яка маса з металевим блиском.

Алмаз — дуже тверда кристалічна речовина. Кристали мають кубічну гра-нецентровану решітку (А = 3,560Е). Помітне перетворення алмаза на графіт спостерігається при температурах понад 1 400 °С у вакуумі або в інертній атмосфері. При атмосферному тиску й температурі близько 3 700 °С графіт випаровується.

Рідкий вуглець можна отримати при тиску вищому за 103 МПа, і температурах вищих за 3 700 °С. Для твердого вуглецю (кокс, сажа, деревне вугілля) характерним є також стан із неупорядкованою структурою — «аморфний» вуглець, який не являє собою самостійної модифікації; в основі його будови лежить структура дрібнокристалічного графіту. Нагрівання деяких різновидів «аморфного» вуглецю вище за 1 500—1 600 °С без доступу повітря викликає їхнє перетворення на графіт. Фізичні властивості «аморфного» вуглецю дуже сильно залежать від дисперсності частинок і наявності домішок. Густина, теплоємність, теплопровідність і електропровідність «аморфного» вуглецю завжди вища, ніж графіту.

Карбін отриманий штучно. Він являє собою дрібнокристалічний порошок чорного кольору (густина р (4 °С) = 1,9—2 г/см3). Побудований з довгих ланцюжків атомів Карбону, покладених паралельно один до одного.

Лонсдейліт знайдений у метеоритах і отриманий штучно; його структура й властивості остаточно не встановлені.

Електронна конфігурація зовнішньої оболонки атому Карбону 2s22p2



Для Карбону характерним є утворення чотирьох ковалентних зв'язків, обумовлене збудженням зовнішньої оболонки до стану 2s'2p3:



Тому Карбон здатний однаковою мірою як притягати, так і віддавати електрони. Хімічний зв'язок може здійснюватися за рахунок утворення sp3-, sp2- і sp-гібридних орбіталей, яким відповідають координаційні числа 4, 3 і 2. Кількість валентних електронів Карбону й кількість валентних орбіталей однакові — це одна з причин стійкості зв'язку між атомами Карбону.

Унікальна здатність атомів Карбону з'єднуватися між собою з утворенням міцних і довгих ланцюгів і циклів призвела до виникнення величезного числа різноманітних сполук Карбону, досліджуваних органічною хімією.

У сполуках Карбон виявляє ступені окиснювання – 4; +2; +4. Атомний радіус 0,77Е, ковалентні радіуси 0,77Е, 0,67Е, 0,60Е відповідно в одинарному, подвійному та потрійному зв'язках; іонний радіус С" 2,60 Е, С4+ 0,20 Е. При звичайних умовах Карбон хімічно інертний, при високих температурах він з'єднується з багатьма елементами, виявляючи сильні відновні властивості.

Усі форми вуглецю стійкі до лугів і кислот і повільно окиснюються тільки дуже сильними окиснювачами, наприклад, хромовою сумішшю (суміш концентрованих HN03 і КС103) або киснем:



«Аморфний» вуглець реагує із фтором при кімнатній температурі, графіт і алмаз — при нагріванні. Безпосереднє з'єднання вуглецю з хлором відбувається в електричній дузі; із бромом і йодом вуглець не реагує, тому численні галогеніди Карбону синтезують непрямим шляхом. З оксигалогенідів загальної формули СОХ2 (де X — галоген) найбільш відомий хлорокис СОС12 (фосген).

При температурах вищих за 1 000 °С вуглець взаємодіє з металами, утворюючи карбіди.

Усі форми вуглецю при нагріванні відновлюють оксиди металів з утворенням вільних металів (Zn, Cd, Cu, Pb та ін.) або карбідів (Са2, Мо2С, WC, Та та ін.):



Вуглець реагує при температурах вищих за 600—800 °С з водяною парою і вуглекислим газом:



Усі форми вуглецю нерозчинні у звичайних неорганічних і органічних розчинниках, але розчиняються в деяких розплавлених металах (наприклад, Fe, Ni, Co).

НАРОДНОГОСПОДАРСЬКЕ ЗНАЧЕННЯ

Народногосподарське значення вуглецю визначається тим, що понад 90 % усіх первинних джерел споживаної у світі енергії припадає на органічне паливо, незважаючи на інтенсивний розвиток ядерної енергетики Тільки 10 % видобутого палива використовується як сировина для основного органічного синтезу й нафтохімічного синтезу, для отримання пластичних мас та ін.

КАРБОН В ОРГАНІЗМІ

Карбон - найважливіший біогенний елемент, що складає основу життя на Землі, структурна одиниця величезного числа органічних сполук, що беруть участь у побудові організмів і в забезпеченні їхньої життєдіяльності (біополімери, а також численні низькомолекулярні біологічно активні речовини - вітаміни, гормони, медіатори та ) Значна частина необхідної організмам енергії утворюється в клітинах за рахунок окиснювання вуглецю. Виникнення життя на Землі розглядається в сучасній науці як складний процес еволюції карбонових сполук.

Унікальна роль Карбону в живій природі обумовлена його властивостями, яких у сукупності не має жоден інший елемент періодичної системи Між атомами Карбону, а також між Карбоном й іншими елементами утворюються міцні хімічні зв'язки, які, однак, можуть бути розірвані в фізіологічних умовах (ці зв'язки можуть бути одинарними, подвійними і потрійними)

Здатність Карбону утворювати 4 рівнозначні валентні зв'язки з іншими ато мами створює можливість для побудови карбонових кістяків різних типів лінійних, розгалужених, циклічних.

Показово, що тільки всього три елементи (С, О, Н) складають 98 % загальної маси живих організмів. Цим досягається певна економічність у живій природі при практично безмежній структурній розмаїтості карбонових сполук невелика кількість типів хімічних зв'язків дозволяє набагато скоротити кількість ферментів, необхідних для розщеплення й синтезу органічних речовин

Особливості будови атома Карбону лежать в основі різних видів ізомерії органічних сполук (здатність до оптичної ізомерії виявилася вирішальною в біохімічній еволюції амінокислот, вуглеводів і деяких алкалоїдів).

Згідно з теорією О. І. Опаріна, перші органічні сполуки на Землі мали абюгенне походження. Джерелами вуглецю служили метан (СН4) і шаністий водень (НСН), що містилися в первинній атмосфері Землі 3 виникненням життя єдиним джерелом неорганічного вуглецю, за рахунок якого утворюється вся органічна речовина біосфери, є карбон (IV) оксид (С02), що знаходиться в атмосфері, а також у природних водах у розчиненому вигляді. Найпотужніший механізм засвоєння (асиміляція) вуглецю (у формі С02) — фотосинтез — здійснюється повсюдно зеленими рослинами. На Землі існує й еволюційно більш давній спосіб засвоєння С02 шляхом хемосинтезу; у цьому випадку мікроорганізми хемосинтетики використовують не променисту енергію Сонця, а енергію окиснювання неорганічних сполук.

Більшість тварин споживають вуглець із їжею у вигляді вже готових органічних сполук. У залежності від способу засвоєння органічних сполук прийнято розрізняти автотрофні й гетеротрофні організми

Застосування для біосинтезу білка й інших поживних речовин мікроорганізмів, що використовують як єдине джерело вуглецю вуглеводні нафти, — одна з важливих сучасних науково-технічних проблем.

Крім стабільних ізотопів Карбону, у природі розповсюджений радіоактивний І4С (в організмі людини його міститься 0,1 мкг). З використанням ізотопів Карбону в біологічних і медичних дослідженнях пов'язано чимало великих досягнень у вивченні обміну речовин і кругообігу вуглецю в природі. Так, за допомогою радіокарбонової мітки була доведена можливість фіксації вуглецю рослинами й тканинами тварин, встановлена послідовність реакції фотосинтезу, вивчено обмін амінокислот, простежені шляхи біосинтезу багатьох біологічно активних сполук і т. ін. Застосування ИС сприяло успіхам молекулярної біології у вивченні механізмів біосинтезу білка й передачі спадкової інформації. Визначення питомої активності НС у вуглецевмісних органічних залишках дозволяє судити про їхній бік, що використовується в палеонтології й археології.

Висновки

Отже, ми дізналися, що карбон дуже поширений у природі і середній вміст в земній корі складає 2,3 • 10-2 % за масою. Карбон накопичується у верхній частині земної кори (біосфері): у живій речовині 18 % Карбону, у деревині — 50 %, у кам'яному вугіллі — 80 %, у нафті — 85 % в антрациті — 96 %. Значна частина Карбону літосфери зосереджена у вапняках і доломітах. Також він має корисні фізичні та хімічні властивості. Карбон здатний однаковою мірою як притягати, так і віддавати електрони. Здатний з'єднуватися між собою з утворенням міцних і довгих ланцюгів і циклів. Карбон використовують як органічне паливо. Здатність Карбону утворювати 4 рівнозначні валентні зв'язки з іншими ато мами створює можливість для побудови карбонових кістяків різних типів лінійних, розгалужених, циклічних.

Список використаних джерел

1) Алексеев В.Н. Количественный анализ, М., 1972. – 504 с

2) Астафуров В.И. Основы химического анализа / В. И. Астафуров. — Москва: Просвещение, 1986. — 160 с.

3) Березан О.В. Хімія: тести для школярів та вступників у ВНЗ. – Тернопіль.: Підручники і посібники, 2009. – 367.

4) Боєчко Ф.Ф. Органічна хімія / [Боєчко Ф. Ф., Найдан В. М., Захарчик Ю.М., Захарченко Н. М.]—К. : Вища школа, 1986. — 320 с.

5) Глинка Н.Л. Задачи и упражнения по общей химии: учебное пособие / Н. Л. Глинка под ред. В. А. Рабиновича, Х. М. Рубиной. — Москва: Інтеграл Пресс, 2008. — 240 с.

6) Глинка Н.Л. Общая химия: учебное пособие для вузов / Н. Л. Глинка под. ред. А.И. Ермакова. — 30-е изд., испр. — Москва: Интеграл Пресс, 2005. - 728 с.

7) Ерстенюк А.М. Навчально-методичний посібник з хімії. - ІваноФранківськ, 2012.
скачати

© Усі права захищені
написати до нас