1   2   3   4
Ім'я файлу: аеп кабак.docx
Розширення: docx
Розмір: 260кб.
Дата: 04.07.2020
скачати


Форма № 17
Міністерство освіти і науки України

Запорізький національний технічний університет

_____________________________________________________________________________________________

(повна назва кафедри)

КУРСОВИЙ ПРОЕКТ


(РОБОТА)

з ___________________________________________________________

(назва дисципліни)

на тему:_____________________________________________________

____________________________________________________________

Студента (ки) _____ курсу ______ групи

напряму підготовки__________________

спеціальності_______________________

__________________________________

(прізвище та ініціали)

Керівник ___________________________

____________________________________

(посада, вчене звання, науковий ступінь, прізвище та ініціали)
Національна шкала ________________

Кількість балів: __________Оцінка: ECTS _____
Члени комісії ________________ ___________________________

(підпис) (прізвище та ініціали)

________________ ___________________________

(підпис) (прізвище та ініціали)

________________ ___________________________

(підпис) (прізвище та ініціали

м.Запоріжжя

20__ рік

ЗМІСТ
Вступ

1. Загальні відомості

2. Розробка структурної та принципової схем

3. Електричний розрахунок

3.1 Розрахунок напруги джерела електроживлення

3.2 Вибір транзисторів кінцевого каскаду

3.3 Розрахунок колекторного кола кінцевого каскаду

3.4 Розрахунок базового кола кінцевого каскаду

3.5 Вибір складених транзисторів УТ4, УТ5 кінцевого каскаду

3.6 Вибір транзистора і розрахунок кіл передкінцевого каскаду

3.7 Розрахунок коефіцієнта загальних гармонійних спотворень

3.8 Розрахунок кола загального зворотного негативного зв'язку за змінному струму

3.9 Розрахунок диференційного вхідного каскаду

3.10 Розрахунок елементів кіл зміщення і стабілізації режиму транзисторів кінцевого каскаду

3.11 Розрахунок результуючих характеристик підсилювача потужності

3.12 Розрахунок ємності конденсаторів підсилювача потужності

Висновки

Список використаної літератури

ВСТУП



Електричні сигнали використовують у всіх галузях науки та техніки. Так, у пристроях електрозв'язку вони передають інформацію на відстань. Різні процеси як у техніці так і у живій природі супроводжуються появою електричних потенціалів та струмів. У більшості випадків значення електричних сигналів, відображаючи інформацію о процесах та явищах у природі та техніці, дуже малі. Тому, щоб скористатися цими сигналами їх необхідно підсилити за допомогою підсилюючих пристроїв.

Підсилюючі пристрої у складі вимірювальних пристроїв застосовуються у всіх галузях народного господарства. За їх допомогою слабкі електричні сигнали підсилюються, в результаті чого значення цих сигналів стають достатніми для приводу у дію виконуючих пристроїв.
1. ЗАГАЛЬНІ ВІДОМОСТІ
1.1 Основні показники якості підсилювачів
Коефіцієнт посилення напруги КU— відношення напруги сигналу на виході підсилювача до напруги сигналу, підведеного до його входу.

Коефіцієнт посилення потужності КP — відношення потужності сигналу на виході підсилювача до потужності сигналу, підведеної до його входу. Часто коефіцієнт посилення виражають в децибелах КдБ= 20 lg, КU = 10 lg KP.

Амплітудно-частотна характеристика — залежність коефіцієнта посилення напруги від частоти. Елементами АХЧ є номінальний діапазон відтворних частот і її нерівномірність в цьому діапазоні.

Нерівномірність АЧХ — відношення найбільшого і якнайменшого коефіцієнтів посилення напруги в заданому діапазоні частот. Діапазон відтворних частот — діапазон частот, в межах якого нерівномірність АЧХ не перевищує заданою.

Вхідний опір — опір входу підсилювача для змінного струму. Звичайно нормують активну складову вхідного опору і вхідну місткість.

Вихідний опір — опір виходу підсилювача для змінного струму. Чим менше вихідний опір підсилювача, тим краще АЧХ по звуковому тиску.

Амплітудна характеристика підсилювача — залежність амплітуди вихідної напруги сигналу від амплітуди напруги сигналу на вході.

Нелінійні спотворення обумовлені нелінійністю ВАХ транзисторів і характеристик намагнічення магнітопроводів трансформаторів

Коефіцієнт гармонік — відношення середньої квадратичної суми вищих гармонік до середньої квадратичної суми всіх гармонік сигналу (ГОСТ 9783-79).

Коефіцієнт інтермодуляціонних спотворень — відношення середньої квадратичної суми комбінаційних компонентів до компоненту вихідного сигналу, частота якого рівна частоті більш високочастотної вхідного сигналу. Коефіцієнти інтермодуляцїї і інтермодуляціонних спотворень визначають при заданому співвідношенні амплітуд вхідних гармонійних сигналів.

Коефіцієнти гармонік і інтермодуляціонних спотворень взаємозв'язані. При нелінійності малого порядку (другого або третього) вони мають близькі значення. При вищих порядках нелінійності коефіцієнт інтермодуляціонних спотворень перевищує коефіцієнт гармонік. Тому нормувати і визначати їх при оцінці якості ПП слід окремо. Суб'єктивне сприйняття нелінійних спотворень при звуковідтворенні залежить в основному від відносних амплітуд комбінаційних компонентів.

Динамічні спотворення — особливий вид спотворень, які виявляються в транзисторних ПП, охоплених глибокою НЗЗ, Ці спотворення обумовлені

перевантаженням каскадів підсилювача унаслідок запізнювання напруги НЗЗ по відношенню до напруги вхідного сигналу. Динамічні спотворення залежать, зокрема, від швидкості наростання вихідного сигналу, яку можна визначити по перехідній характеристиці підсилювача.

Перехідна характеристика підсилювача — залежність вихідної напруги від часу, що пройшов після подачі на вхід підсилювача стрибка вхідної напруги.

Рівень власних шумів підсилювача — відношення середньої квадратичної напруги шумів (у заданій смузі частот) на виході підсилювача до напруги, відповідної номінальній потужності. Рівень шумів прийнято виражати в децибелах.

Рівень фону — відношення середньої квадратичної напруги суми складових фону (гармонік частоти живлячої мережі) до вихідної напруги при номінальній потужності. Аналогічно оцінюють і рівень наведень.

Вихідна потужність підсилювача.

Максимальна вихідна потужність — вихідна електрична потужність, при якій обмеження по максимуму вихідного сигналу збільшує коефіцієнт гармонік по напрузі до 10%.

Номінальна вихідна потужність — вихідна потужність, що вказана в нормативно-технічній документації і є необхідною умовою при вимірюванні інших параметрів, наприклад, коефіцієнта гармонік, рівня перешкод і ін.

Чутливість підсилювача — напруга сигналу на вході, при якому вихідна потужність рівна номінальною.

Динамічний діапазон амплітуд — відношення (звично в децибелах) амплітуд найсильнішого і найслабкішого сигналів, які можуть бути посилені даним підсилювачем при допустимих спотвореннях і рівні перешкод. Рівень найслабкішого підсилюваного сигналу обмежується рівнем перешкод, найсильнішого — нелінійними спотвореннями. Для хорошої якості відтворного сигналу динамічний діапазон амплітуд повинен складати 60 дБ.
1.2 Зворотні зв'язки в підсилювачах
Зворотним зв'язком називається зв'язку між вихідними і вхідними ланцюгами якого-небудь пристрою. Залежно від співвідношення фаз коливань, що поступають на вхід підсилювача від джерела сигналу і з виходу підсилювача через ланцюг зворотного зв'язку, зворотний зв'язок може бути позитивним або негативним. При ПЗЗ фази цих коливань співпадають і коефіцієнт посилення зростає. При НЗЗ коефіцієнт посилення менше, ніж без зворотного зв'язку. Зворотні зв'язки діляться на корисні, спеціально вводяться і шкідливі, або

паразитні (зокрема внутрішні). За способом здійснення розрізняють зворотний зв'язок по напрузі, струму і змішану (комбіновану), а за способом введення напруги зворотного зв'язку у вхідний ланцюг підсилювача — паралельну і послідовну.

Щоб визначити, яким є зворотний зв'язок — по струму або по напрузі, необхідно враховувати, що зворотний зв'язок по струму зникає при обриві навантаження, а зворотний зв'язок по напрузі — при короткому замиканні. Щоб визначити, є зворотний зв'язок паралельним або послідовним, необхідно враховувати, що послідовний зворотний зв'язок зникає при обриві джерела сигналу, а паралельна — при короткому замиканні джерела сигналу. При дуже малому вихідному опорі джерела сигналу паралельний зворотний зв'язок неможливий, оскільки джерело сигналу закорочуєтся ланцюг зворотного зв'язку. При дуже великому вихідному опорі джерела сигналу неможливий послідовний зворотний зв'язок ланцюг зворотного зв'язку розірваний.

Вплив НЗЗ на параметри підсилювача залежить від виду зв'язку. Характер зміни коефіцієнтів посилення напруги і струму, а також вхідного опору повністю визначається способом підключення ланцюга НЗЗ до входу підсилювача. При послідовній НЗЗ коефіцієнт посилення струму не змінюється.

При паралельній НЗЗ коефіцієнт посилення напруги не змінюється, коефіцієнт посилення струму зменшується в п раз, вхідний опір зменшується в п раз.

Вплив НЗЗ на вихідний опір підсилювача залежить тільки від способу зняття сигналу зворотного зв'язку з виходу підсилювача, тобто від виду зв'язку (по струму або по напрузі). При введенні НЗЗ по струму вихідний опір збільшується, при введенні НЗЗ по напрузі — зменшується.

Параметри підсилювача стабілізуються при введенні НЗЗ, що часто є визначальним чинником при рішенні питання про доцільність застосування зворотного зв'язку. При частотно - незалежної НЗЗ по напрузі стабілізується вихідна напруга, отже, зменшується нерівномірність АХЧ. За допомогою частотно-залежної НЗЗ можна додати АЧХ підсилювача різну форму.

При введенні послідовної НЗЗ по напрузі зменшується коефіцієнт гармонік за умови, що зворотний зв'язок є негативним як для першої, так і для вищих гармонік сигналу. Якщо для якої-небудь вищої гармоніки зворотний зв'язок виявиться позитивним (унаслідок фазових зрушень на вищих частотах), коефіцієнт гармонік може зрости. Якщо ФЧХ підсилювача і ланцюга зворотного зв'язку лінійні, а коефіцієнт посилення постійний в діапазоні частот до даної гармоніки, коефіцієнт гармонік при послідовній НЗЗ по напрузі зменшується в раз. Проте введенням НЗЗ не можна зробити спотворення меншими, ніж вони були на вході підсилювача. Рівень власних шумів підсилювача при введенні послідовної НЗЗ по напрузі також зменшується.

Стійкість підсилювача з НЗЗ залежить від коефіцієнта посилення і коефіцієнта передачі ланцюга зворотного зв'язку, тобто від глибини НЗЗ. При глибокій НЗЗ фазові зрушення на вищих і нижчих робочих частотах обумовлюють появу ПЗЗ, яка викликає нестійкість роботи підсилювача, а іноді і самозбудження. У зв'язку з цим 6 підсилювачах з глибокою НЗЗ необхідно розширювати діапазон частот з лінійною ФЧХ. Для поліпшення ФЧХ підсилювача з НЗЗ в ньому не слід використовувати частотно-залежні регулювання і трансформатори. Якщо застосування трансформатора неминуче, то його конструюють так, щоб індуктивність розсіяння і власна місткість були мінімальними. Для додаткового поліпшення ФЧХ підсилювача можна застосовувати спеціальні коректуючі ланцюги.

Використовування ПЗЗ дозволяє підвищити коефіцієнт посилення або одержати негативний вихідний опір підсилювача, що необхідне для поліпшення роботи АС. Одночасно з ПЗЗ необхідно обов'язково застосовувати НЗЗ. Інакше робота підсилювача буде нестійкою.

Вплив паразитних зворотних зв'язків. При слабких паразитних зв'язках з'являються додаткові частотні і фазові, а іноді і нелінійні спотворення. При сильному паразитному зворотному зв'язку підсилювач може самозбудиться. У ПП паразитні зворотні зв'язки обумовлені наступними причинами:

1) електричними зв'язками між ланцюгами;

2) магнітними зв'язками між окремими каскадами (унаслідок розсіяння магнітного потоку трансформаторів);

3) живленням від загального джерела.

Для ослаблення електричних і магнітних зв'язків застосовують відповідне екранування. Ослаблення зв'язку через джерело живлення досягається зменшенням його вихідного опору і включенням розв'язуючих фільтрів. Крім того, не повинно бути зайвого запасу посилення.
1.3 Багатокаскадні підсилювачі
Принципи побудови багатокаскадних підсилювачів.

У двохкаскадних підсилювачах на БТ використовуються різні комбінації включення транзисторів. Якщо вихідний опір джерела сигналу і опір навантаження підсилювача приблизно рівні і складають одиниці або десятки килоом, слід застосовувати каскади з ОЕ; при малих опорах (менше 100 Ом) — перший каскад з ОЕ або Про і другий каскад з ОК, а при великих опорах (більше 100 кОм) — перший каскад з ОК і другий з ОЕ.

Якщо опір навантаження підсилювача значно перевищує опір джерела сигналу, слід використовувати обидва каскади з ОЕ. При опорі навантаження підсилювача меншому, ніж вихідний опір джерела сигналу, рекомендується використовувати обидва каскади з ОЕ або перший каскад з ОЕ, а другий — з ОК.

Для багатокаскадних підсилювачів приведені вище рекомендації відносяться до першого і останньому каскадам. Проміжні каскади виконуються з ОЕ.

Гібридні підсилювачі, що містять ПТ і БТ, мають істотні переваги в порівнянні з підсилювачами, в яких використовуються транзистори якого-небудь одного вигляду. Наприклад, в підсилювачах, в яких чергуються каскади на ПТ і БТ, досягається значно більший коефіцієнт посилення потужності, оскільки ПТ, включені з ОІ або ОС, дозволяють одержати дуже великий коефіцієнт посилення струму, а БТ — велике посилення напруги (при навантаженні високим вхідним опором ПТ). Вхідний опір таких, підсилювачів легко зробити високим, а вихідний — низьким. Гібридні підсилювачі можуть бути однонаправленими, тобто володіти наступною властивістю: при подачі напруги сигналу на вихід напруга на вході відсутня. Однонаправленість підсилювача дозволяє досягти великого посилення напруги при стійкій роботі.

Підсилювачі з вхідними каскадами на ПТ характеризуються дуже великим вхідним опором.

Двокаскадний підсилювач, в якому перший каскад з ОІ, другий - з ОБ (ОІ - ОБ), характеризується високими коефіцієнтом посилення напруги і вхідним опором, а також хорошій АЧХ. Такий підсилювач є практично однонаправленим, якщо опір навантаження каскаду з Про не дуже велике. Для отримання великого коефіцієнта посилення напруги опір навантаження повинен бути великим, проте при цьому погіршується АЧХ підсилювача у області вищих частот

Підсилювач, в якому перший каскад з ОС, другою з ОБ (ОС - ОБ), відрізняється меншою вхідною місткістю і великим вхідним опором в порівнянні з підсилювачем по схемі ОІ — ОБ, проте його коефіцієнт посилення напруги менше. Підсилювач по схемі ОІ — ОЕ має порівняно малий вихідний опір (більш ніж на порядок менше в порівнянні з підсилювачами ОІ — ОБ і ОС — ОБ) і значно більший коефіцієнт посилення струму; АЧХ у області вищих частот дещо гірший. Дуже близький по властивостях до цього підсилювача підсилювач, виконаний по схемі ОС — ОЕ. Підсилювач, в якому перший каскад з ОІ, другий з ОК (ОІ — ОК); має середній коефіцієнт посилення напруги, високий вхідний і дуже низький вихідний опір, тому використовується як перетворювач опорів. Недоліком цього підсилювача є порівняно велика вхідна місткість. Підсилювач, в якому перший каскад з ОС, другою з ОК (ОС — ОК), не підсилює напругу, може мати найменшу вхідну місткість і найбільший вхідний опір. Використовується як перетворювач опорів.

Підсилювачі з безпосереднім зв'язком між каскадами характеризуються простотою (містять мало деталей), високими показниками якості (порівняно з широким діапазоном робочих частот і малими нелінійними спотвореннями), стабільністю параметрів при заміні транзисторів, змінах напруги живлення і температури навколишнього середовища. Стабільність параметрів досягається введенням сильної НЗЗ по постійному струму, що подається з виходу підсилювача на перший каскад або охоплює два-три каскади.

З великого числа можливих варіантів подібних схем стабілізації режиму роботи транзисторів доцільно застосовувати тільки такі, які дозволяють досягти високої стабільності режиму і містять меншу кількість елементів. Одним з критеріїв високої ефективності стабілізації є малий опір резисторів, включених в ланцюзі баз транзисторів. При збільшенні опору в ланцюзі бази різко зростає дія зворотного струму колектора, що дестабілізує.

Підсилювачі з RC - зв'язком між каскадами також, як і підсилювачі з безпосереднім зв'язком, характеризуються простотою, малими габаритними розмірами і масою. Проте унаслідок впливу реактивних елементів зв'язку вони мають дещо гіршу АЧХ і менш економічні при однакових вимогах, що пред'являються до стабільності параметрів.
1.4 Підсилювачі потужності
Могутнім каскадом прийнято рахувати каскад, в якому транзистори віддають в навантаження потужність, близьку до максимально можливої. Основними вимогами, що пред'являються до могутніх вихідних каскадів, є отримання необхідної потужності в навантаженні і максимальний КПД при допустимих спотвореннях сигналу. Вимога максимального КПД має найбільше значення для підсилювачів з живленням від автономних джерел. Максимальне посилення потужності — другорядна вимога, оскільки необхідне посилення може бути одержане в інших каскадах.

Чим вищий КПД каскаду, тим менш могутній транзистор потрібен для отримання необхідної потужності. Максимальний КПД досягається при оптимальному навантаженні. Проте опір навантаження, як правило буває задано. Якщо воно значне відрізняється від оптимального, то для отримання високого КПД навантаження включають через трансформатор, що погоджує. Використовування трансформатора, що погоджує, на вході могутнього вихідного каскаду дозволяє одержати максимальний коефіцієнт посилення потужності передвихідним каскадом і мінімальний рівень спотворень при заданій потужності в навантаженні підсилювача. Застосування трансформаторів, що погоджують, в малогабаритних підсилювачах приводить до зниження КПД, оскільки малогабаритні недорогі трансформатори мають порівняно малий КПД.

Режими роботи транзисторів у вихідних каскадах. Транзистори можуть працювати в режимах класів А, В або АВ. Режимом класу А називають такий режим, при якому вихідний струм протікає протягом всього періоду підсилюваного сигналу. Режим з таким відсіченням, при якій вихідний струм протікає практично тільки протягом напівперіоду сигналу, називають режимом класу В. Промежуточний режим, при якому вихідний струм протікає протягом більше одного напівперіоду сигналу, називають режимом класу АВ. Вибір режиму здійснюється подачею відповідної напруги між базою і емітером. У режимах класів АВ і В можуть працювати тільки двотактні каскади.

Однотактні вихідні каскади застосовуються іноді в підсилювачах з малою вихідною потужністю, оскільки їх КПД не перевищує 40 %. Включення транзистора з Про і ОК. не застосовується, оскільки приводить до зниження посилення потужності.
  1   2   3   4

скачати

© Усі права захищені
написати до нас