1   2
Ім'я файлу: bestreferat-103483.docx
Розширення: docx
Розмір: 63кб.
Дата: 21.12.2021
скачати

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра МПУ

MATLAB

Реферат




Исполнитель:

Студентка группы М-53

Гумарева Л.С.

Гомель 2004

Введение
MATLAB – матричная лаборатория – наиболее развитая система программирования для научно-технических расчетов, дополненная к настоящему времени несколькими десятками более частных приложений, относящихся к вычислительной математике, обралботке информации, конструированию электронных приборов, экономике и ряду других разделов прикладной науки. Изучение MATLAB'а по фирменной документации, которая теперь прилагается на инсталляционном компакт-диске, занимает у начинающих пользователей слишком много времени не только из-за необходимости читать ее на английском языке со специфическим слэнгом, но, главным образом, ввиду неизбежного для таких руководств последовательного и достаточно формального изложения большого объема информации, а имеющиеся на русском языке пособия в основном следуют этому стереотипу. Даже для опытного специалиста по расчетам на компьютере такое изучение сопряжено с неоправданно большими затратами труда.

MATLAB предназначен прежде всего для программирования численных алгоритмов. Он разрабатывается уже более 15 лет и возник на основе более ранних прикладных пакетов LINPACK и EIGPACK, созданных в 1970-е гг. в США, и в свою очередь повлиял на появление таких систем, как MathCad, MAPLE и Mathematica. Совершенствование системы MATLAB происходило как в связи с достижениями в вычислительной математике, так и в связи с изменениями в архитектуре персональных компьютеров и развитием общесистемных средств. Со временем MATLAB был дополнен целым рядом уже упоминавшихся приложений (toolboxes), далеко раздвинувших границы его применимости. Далее речь пойдет лишь о ядре MATLAB'а, которое мы будем называть системой, и конкретно о ее версии 5.2, выпущенной фирмой MathWorks в январе 1998 г.

MATLAB – система программирования высокого уровня, работающая как интерпретатор и включающая большой набор инструкций (команд) для выполнения самых разнообразных вычислений, задания структур данных и графического представления информации. Команды эти разбиты на тематические группы, расположенные в различных директориях системы. Теперь в системе около 800 команд, и примерно половина из них вполне доступна начинающему пользователю. Команды с большим возможным объемом вычислений написаны на С, но много и таких команд, которые представлены в терминах этих первых. Поэтому система оказывается почти открытой для пользователя. Имеются большие возможности для вывода двумерной и трехмерной графики и средства управления ею. Пользователь может без особых затруднений добавлять свои команды и писать программы в терминах уже существующих команд; несколько сложнее делать это в рамках Фортрана и С. Можно обмениваться данными с программами на этих языках, а из них обращаться к системе. Краткость и наглядность программирования и исключительные возможности визуализации результатов делают систему очень эффективной при поисках и апробации новых алгоритмов, при проведении разовых расчетов и в учебном процессе, поскольку ее можно осваивать без предварительного знакомства с основами программирования и выполнять такие сложные примеры, которые невозможно делать с использованием других систем.

Документация по системе и ее приложениям содержит много тысяч страниц, и поэтому естественно встает вопрос о том, как ее осваивать. Работа с системой требует определенной математической подготовки, так что обучение можно начинать на втором курсе вуза. Основные сведения о системе изложены в руководствах /1/ – /2/: /1/ – это учебник с описанием вычислительных возможностей и архитектуры системы, /2/ – описание ее графических возможностей. Конечно, можно читать подряд /1/, /2/ и при необходимости обращаться за уточнениями к команде help или справочнику /3/, в котором описаны почти все команды. Но гораздо более эффективным, на наш взгляд, является изложение основных вычислительных процедур с помощью наиболее употребительных команд системы. Именно так мы и познакомимся с MATLAB'ом, а точнее примерно с 30-40 его командами. После этих занятий пользоваться документацией /1/ и /2/ будет гораздо легче.

Приложений к системе мы здесь не касаемся, а изучать их можно только после предварительного ознакомления с ней, а также с тем разделом науки, которому посвящено конкретное приложение. Отметим только, что большинство приложений означают для пользователя просто расширение списка доступных ему команд. Очень удобно то, что вся документация по системе и приложениям находится на компакт-диске, с которого происходит их установка, и при желании она может быть размещена также и на винчестере.

Для работы с системой достаточно иметь компьютер PC 486 с оперативной памятью хотя бы 16 Mb и с установленными на нем системами Windows 95 и MATLAB 5.2. В действительности MATLAB может работать и с друогими операционными системами, такими, например, как Macintosh, Unix и OS/2.

За рубежом вышло уже достаточно много учебных пособий по системе, но на русский язык ни одно из них пока не переводилось и даже в центральных библиотеках их теперь нет из-за сокращения финансирования. Изданные у нас пособия (например, /4/ – /12/) в основном следуют руководствам /1/ – /3/, тогда как нам представляется полезным дать менее формальное введение в предмет, опираясь прежде всего на интуицию слушателя.

1. Переменные
Переменные могут быть числовыми, текстовыми и других типов. У нас будут только числовые (это во всех деталях) и текстовые (совсем немного). Название переменной начинается с латинской буквы, далее могут быть буквы и цифры (не более 31 символа). Строчные и прописные буквы здесь различаются.

1. Числовые переменные. Это числа, векторы, матрицы и многомерные массивы. В компьютере все числа представлены примерно с 16 десятичными знаками, под каждое вещественное число отводится 8 байтов, под комплексное – 16.
1.1 Ввод чисел
Целые числа. В системе они не выделяются явно. Наберем и выполним отдельно каждую команду:

a=2 a=2.0 a=2; a=1:6 b=1:20 c=10:-2:5

Командное окно. Командная строка. Редактирование командной строки. Буфер исполненных команд. Как выбирать информацию из командного окна и из буфера исполненных командных строк. Нельзя допускать совпадения имени переменной с именем какой-либо команды.

Вещественные числа. Выполним по отдельности следующие команды:

d=0.5:0.3:2.5 d=.5:.3:2.5 d=.5+1:.3-.1:2.5*2 length(d)

d(end) d(end-2) d(1) d(0) d(2:7) d(7:-1:2) d(150)

f=linspace(1.5,30,143); length(f)

Индексы всегда начинаются со значения 1. Команды набираются на малом латинском регистре. Возможна многопараметричность команд.

Диапазон вещественных чисел:

realmax realmin

Другие константы MATLAB'а:

pi i j eps

Их не следует портить.

Комплексные числа:

q=1+2*i q=1+2i real(q) imag(q) abs(q) conj(q) s=angle(q) (здесь -
q=1+2*i;r=3; fi=0:.01:pi; z=q+r*exp(i*fi); plot(z) Это верхняя полуокружность.
1.2 Ввод векторов
Векторы-строки:

a=1:6 linspace(1,6,10)

Векторы-столбцы:

a=(1:6)' linspace(1,6,10)'

Операторы .' и ' :

y1=linspace(1,6,4)'; y2=y1; y=y1+i*y2; y.' y'

Команды linspace и: применимы для задания только вещественных векторов.

Ввод матриц. A(i,j) - элемент из i-й строки и j-го столбца. A(k) – k-й элемент таблицы, вытянутой в столбец.

A=[1,2;3,4] A=[1;2,3;4] A(2,2) A(3) A(5) size(A) A(3,4)=10 size(A)

A(5)=6 size(A) A(22)=3 A=A(:) A(22)=3 size(A) [m,n]=size(A)

A=reshape(1:24,4,6) size(A) A([1,end],:)=[] A(:,[1,end])=[] size(A)
1.3 Некоторые специальные матрицы
m=3;n=4; eye(m,n) eye(m) eye(n) ones(m,n) ones(m) ones(n) zeros(m,n)

rand(m,n) rand(m,n) rand('state',0) rand(m,n) rand(m) Это равномерное распределение на интервале (0, 1).

randn(m,n) randn('state',100) Это нормальное распределение, у него мат.ожидание=0, дисперсия=1

v1=1:4 v2=7:12 toeplitz(v1,v2) toeplitz(v1)
1.4 Некоторые простые команды
A=reshape(1:24,4,6) triu(A) triu(A,0) triu(A,2) triu(A,-1) tril(A)

v=1:5 diag(v) diag(v,2) diag(v,-1)

diag(A) diag(A,2) diag(A,-1)

A=reshape(1:24,4,6) rot90(A) rot90(A,2)

Выдачи на экран. Команда format с различными опциями.

В обычном формате (forrmat short) выдается 5 знаков, для целых чисел 9 знаков, порядки изменяются от -308 до +308. В полном формате (format long e) 16 знаков.

a=2 a=.001 a=1e-3 a=1e-5 a=123456789 a=1234567891 a=1+3*i

format long e, 2^.5, format short

Опция format short e позволяет получать ровные столбцы.

Они берутся в кавычки (на букве э на латинском регистре), символ занимает 2 байта. Используются для задания заголовков в числовых выдачах и на графиках, для задания формул и т.д. Можно переводить текстовые переменные в числовые и наоборот. Выполним в командной строке

t='Moscow - столица России' (после дефиса нужно перейти на русский шрифт и затем не забыть снова вернуться на латинский).

Другие типы переменных – ячейки и структуры.

Система help.

help выдает список директорий системы;

help <имя директории> выдает список команд директории;

help <имя команды> выдает описание команды.

type <имя команды> выдает текст команды или программы пользователя, если он составлен в терминах MATLAB'а.

2. Элементы xy-графики
1.Как открывать графическое окно:

figure whitebg zoom on

Теперь построим график функципи y=sin(2x), 0<=x<=5, выполнив строку

x=0:1e-3:5; y=sin(2*pi*x); plot(y) plot(x,y) ,grid

Использование режима zoom:

k=100; y=sin(2*pi*k*x); plot(y)

2.Автоматическое чередование цветов. Теперь будем, как правило, нумеровать строки.

1;x=linspace(0,1,20); k=.1:.1:.8; y=k'*x; plot(x,y)

Здесь определяется вектор-строка x=0:20, затем вектор-строка k из 8 угловых коэффициентов, далее получается матрица y=k'*x как произведение вектора-столбца k' на вектор-строку x. Строки этой матрицы состоят из точек соответствующих прямолинейных отрезков. Наконец, строятся графики этих отрезков как функций от x – первая нижняя линия (она желтая) соответствует k=.1, последняя, тоже желтая, – для k=.8. Мы видим, что цвета, которых всего 7, чередуются циклически в таком порядке (под русскими английские названия):

желтый фиолетовый голубой красный зеленый синий белый

yellow magenta cyan red green blue white

Вызовем строку 1 и отредактируем в ней команду plot:

1;x=linspace(0,1,20); k=.1:.1:.8; y=k'*x; plot(x,y,'g.')

т.е. добавим там третий (текстовой, ибо он в апострофах) аргумент. Все кривые на рисунке станут зелеными (green), а линии будут изображаться отдельными точками. Аналогично употребляются и другие цвета из этого списка – по первой букве. В текстовом аргументе может быть до трех символов. Для изображения точек графика помимо . употребляются еще : -- -. * x o + и некоторые другие символы.

3.Графики в полярных координатах:

x=1:.01:3; nx=length(x); r=x.^2; fi=linspace(0,5*pi,nx); polar(fi,r)

4.Еще один пример – легко строятся многозначные функции:

x=0:.1:6*pi; y=cos(x); plot(x,y) plot(y,x)

5.Управление осями:

axis off axis on axis ([-10,10,-5,20]) axis auto axis equal axis square

Размеры осей можно задавать и для трехмерной графики, но цвета в ней используются для характеристики величины ординаты и команда zoom там не работает.

3. Простые примеры, иллюстрирующие эффективность MATLAB
1. Суммирование. Найдем при заданном n частичную сумму ряда s(n) = 1/k^2, k=1:n. Для этого выполним строку

1;n=100; k=1:n; f=k.^(-2); plot(cumsum(f)), [sum(f),pi^2/6] =1000

Команда cumsum(f) подсчитывает все частичные суммы s(k) от f(1:k) для каждого k от 1 до n, так что на графике можно наблюдать процесс формирования нужной нам величины. В конце строки выдается численный и точный результаты:

ans = 1.6350 1.6449 .

Полагая n=1000, получим

ans = 1.6439 1.6449 ,

т.е. ошибку в 1 единицу 4-й значащей цифры.

Сходимость не всегда столь очевидна, как на этом графике. Чтобы в этом убедиться, усложним наш пример: при заданных m>1 и n найдем частичную сумму ряда s(m,n) = sum(1/k^m), k=1:n (при m=1 получается уже расходящийся гармонический ряд). Для проведения вычислений отредактируем строку 1:

2;m=2; n=1000; k=1:n;f=k.^(-m); plot(cumsum(f)), sum(f)

=1.5 =1e4

=1.2

и сначала для проверки получим свой старый результат. Но уже при m=1.5 у нас, глядя на график, нет полной уверенности в достижении сходимости. Это тем более так при m=1.2: для n=1000 ans=4.3358, а для n=1e4 ans=4.7991. Факт сходимости ряда при m=1.01 нельзя установить численно из-за низкой скорости его сходимости.

Чтобы лучше запомнить действие команды cumsum, вычислим (x/sin(x))dx, x[0, 3]. Подинтегральная функция f=x/sin(x) не имеет в нуле особенности, и поэтому достаточно выполнить строку

3;n=100; h=3/n; x=h/2:h:3-h/2; f=x./sin(x); plot(h*cumsum(f)), grid, sum(h*f) =1000

т.е. аппроксимировать f в серединах интервалов (эти точки x называют полуцелыми в отличие от концов счетных интервалов – целых точек). Сравнение ответа ans = 8.4495 и графика наводит на мысль о том, что пока сходимость еще не достигнута, но при n=1e3 ans = 8.4552, так что при n=1e2 со сходимостью в действительности все в порядке, а возрастание функции h*cumsum(f) на правом конце происходит из-за роста там функции f – это можно увидеть, выполнив

4;plot(f)

Для матрицы A команды sum и cumsum работают вдоль столбцов (значит, по первому индексу), а для вектора – вдоль него независимо от того, строка это или столбец. Чтобы провести суммирование для матрицы A вдоль ее строк, нужно выполнить sum(A,2), т.е. указать для выполнения команды второй индекс. Это правило относится ко многим командам MATLAB'a и к многомерным матрицам тоже – по умолчанию имеется в виду первый индекс, а в противном случае нужно всегда указывать, по какому индексу должна работать команда, и это указание не сохраняется для последующих команд.

2. Произведения. Аналогично суммированию с помощью команд prod и cumprod вычисляются и обрабатываются произведения. Например, найдем (1-1/k^2), k=2:100 (при k1/2), выполнив строку

1;n=100; k2=(2:n).^2; a=1-1./k2; cp=cumprod(a); cp(end), plot(cp/.5), grid

Результат cp(end) = 0.5050 говорит о том, что сходимость здесь не очень быстрая. Это видно и из графика, на котором представлена относительная ошибка результата. Обратите внимание на названия переменных k2=k^2 и cp=cumprod(..): при выборе имен переменных всегда нужно стремиться к тому, чтобы эти имена хоть как-то отражали суть дела (это особенно важно при написании больших программ, где много переменных).

При вычислении произведений можно выйти за числовую шкалу. Найдем, например, для каких k можно найти k!. Ясно, что максимально допустимое km вряд ли больше 200, так что строка

2;n=200; k=1:n; kf=cumprod(k); plot(kf)

должна дать ответ на наш вопрос. Из-за быстрого возрастания kf и ограниченной разрешимости дисплея (это не более 0.5% от максимального значения на графике) мы видим всего одну точку kf(km), перед которой, как нам ошибочно кажется, идут нули и за которой идут числа inf (infinity), вообще никак не представленные на рисунке. Точно так же графика обходится и с переменной NaN (not a number), и это обстоятельство может быть иногда полезным. Переменная NaN возникает в таких ситуациях:

0/0 inf-inf inf/inf

Переменные inf и NaN (они получаются со знаком) можно использовать в программах. Для определения km выполним строку

3;sum(isinf(kf))

в которой isinf(kf) выдаст 1 на тех позициях вектора размеров kf, где элементы kf есть inf, и 0 на остальных позициях. Поскольку ans=30, km=n-30=170, что можно было бы получить и сразу, выполнив строку

4;km=sum(isfinite(kf))

где isfinite отмечает те элементы числовой переменной, которые отличны от inf и NaN. При выходе произведения за числовую шкалу для сомножителей можно использовать команды

log (взятие натурального логарифма),

log10 (взятие десятичного логарифма),

abs (взятие модуля),

sign (взятие знака, выдающее 1, 0 и -1).

3. Логические задачи. Обычно при освоении программирования логические действия даются труднее арифметических. Приведем здесь два простых примера задач логического характера.

1. Напишем строку для нахождения общих элементов двух векторов:

  1   2

скачати

© Усі права захищені
написати до нас