Ім'я файлу: Уманський державний педагогічний університет.docx
Розширення: docx
Розмір: 34кб.
Дата: 27.04.2022
скачати

Уманський державний педагогічний університет

імені Павла Тичини

Факультет фізики, математики та інформатики
ФІЗИКА РІДКИХ КРИСТАЛІВ

(ЗАСТОСУВАННЯ)

Підготувала

студентка

ІІ курсу з-261 групи

ОС «МАГІСТР»

заочної форми навчання

спеціальність 014.09 середня освіта (фізика)

Козінська Алла Василівна



Умань - 2022

ЗМІСТ

ВСТУП

1. Рідкі кристали сьогодні і завтра

2. Електронна гра, електронний словник і телевізор на рідких кристалах

3. Керовані оптичні транспаранти

4. Просторово-часові модулятори світла

5. Як зробити стереотелевізор

6. Окуляри для космонавтів

7. Рідкокристалічний дисплей

ВИСНОВКИ

ЛІТЕРАТУРА


Вступ

В наш час, час науково-технічної революції, дослідження науки так стрімко упроваджуються в матеріальне виробництво та життя, що іноді складаються парадоксальні ситуації. А саме яке-небудь фізичне явище, що послужило основою нового виду виробництва, інтенсивно впроваджуються в техніку та побут, однак знання про це явище та його відомість в широких колах явно недостатньо.

Подібна ситуація складається з рідкими кристалами та знаннями про них. Зараз пристрої, що засновані на основі рідких кристалів, стрімко впроваджуються в техніку відображення інформації. Почалось масове впровадження пристроїв, що містять рідкі кристали, в побут. Перспективи масового впровадження рідких кристалів в наше життя ще більш багатообразні та масштабні: від термометрів до телевізорів. Процес впровадження наукових досліджень в практику та масове виробництво йде тут настільки швидко, що відповідні досягнення та відомості не знайшли поки що належного відображення навіть в програмах вузів. Тим часом рідкі кристали, або рідкокристалічний стан речовини, з фізичної точки зору є самостійний фазовий стан, не менш важливий і цікавий, ніж усім добре відомий стан речовини: твердий, рідкий та газоподібний. В деяких відносинах, в пізнавальному аспекті, воно є навіть цікавішим.

Наука та її досягнення активно впливають на наше життя, тому, як правило, підвищений науковий інтерес до того чи іншого об'єкту чи явища означає, що цей об'єкт чи явище представляє великий практичний інтерес. В цьому відношенні не є виключенням й рідкі кристали. Цікавість до них перш за все обумовлена можливостями їх ефективного застосування в ряді галузей виробничої діяльності. Впровадження рідких кристалів означає економічну ефективність, простоту, зручність. В даній роботі розглянемо структуру рідких кристалів, їх властивості та застосування їх в нашому житті.



  1. Рідкі кристали сьогодні і завтра

Багато оптичних ефектів в рідких кристалах вже освоєні технікою і використовуються у виробах масового виробництва. Наприклад, всім відомий годинник з індикатором на рідких кристалах, але не всі ще знають, що ті ж рідкі кристали використовуються для виробництва наручного годинника, в який вбудований калькулятор. Тут вже навіть важко сказати, як назвати такий пристрій, чи то годинник, чи то комп'ютер. Але це вже освоєні промисловістю вироби, хоча всього десятиліття тому подібне здавалося нереальним. Перспективи ж майбутніх масових і ефективних застосувань рідких кристалів ще дивовижніші.[1]

Рідкі кристали володіють дуже важливими оптичними властивостями, які забезпечили їх численне застосування і великий інтерес до їх вивчення. Як нематики, так і деякі смектики є одноосними кристалами, властивості яких легко і в широких межах змінюються зовнішніми діями. Це відкриває широкі можливості управління світловими потоками за допомогою рідких кристалів.

Холестерики унаслідок спіральної періодичності їх структури проявляють дифракційні властивості у видимій частині спектру. Оскільки крок спіралі змінюється під впливом зовнішніх дій, наприклад температури, то за допомогою цих зовнішніх дій також можна управляти світловим потоком.

На властивості рідких кристалів великий вплив роблять електричні і магнітні поля. Вивчення цих впливів є в даний час предметом інтенсивних наукових досліджень, а отримувані результати використовуються в практиці. Широко відомі цифрові покажчики на рідких кристалах, дисплеї. Розроблений метод візуалізації зображень в ультрафіолетовому випромінюванні. Великими перевагами рідкокристалічних плівок є їх порівняльна дешевизна і мала величина використовуваних потужностей і електричної напруги. [6]
2. Електронна гра, електронний словник і телевізор на рідких кристалах

Відомо, якою популярністю у молоді користуються різні електронні ігри, що зазвичай встановлюються в спеціальній кімнаті атракціонів в місцях суспільного відпочинку або фойє кінотеатрів. Успіхи в розробці матричних рідкокристалічних дисплеїв зробили можливим створення і масове виробництво подібних ігор в мініатюрному, так би мовити, кишенькового виконання. Наприклад, всім відома гра «Ну, постривай!», освоєна вітчизняною промисловістю. Габарити цієї гри, як у записника, а основним його елементом є рідкокристалічний матричний дисплей, на якому висвічуються зображення вовка, зайця, курей і яєчок, що котилися по жолобах. Завдання гравця, натискаючи кнопки управління, примусити вовка, переміщаючись від жолоба до жолоба, ловити яєчка, що скочуються з жолобів, в корзину, щоб не дати їм впасти на землю і розбитися. Тут же відзначимо, що, крім розважального призначення, ця іграшка виконує роль годинника і будильника, тобто в іншому режимі роботи на дисплеї «висвічується» час і може подаватися звуковий сигнал в необхідний момент часу.

Ще один вражаючий приклад ефективності союзу матричних дисплеїв на рідких кристалах і мікроелектронної техніки дають сучасні електронні словники, які почали випускати в Японії. Вони є мініатюрні обчислювальні машинки розміром із звичайний кишеньковий мікрокалькулятор, в пам'ять яких введені слова на двох (або більше) мовах і які забезпечені матричним дисплеєм і клавіатурою з алфавітом. Набираючи на клавіатурі слово на одній мові, ви вмить отримуєте на дисплеї його переклад іншою мовою. Уявіть собі, як покращає і полегшиться процес навчання іноземних мов в школі і у вузі, якщо кожен учень буде забезпечений подібним словником. А спостерігаючи, як швидко вироби мікроелектроніки упроваджуються в наше життя, можна з упевненістю сказати, що таке час не за горами. Легко уявити і шляхи подальшого вдосконалення таких словників-перекладачів: перекладається не одне слово, а ціле речення. Крім того, переклад може бути і озвучений. Словом, впровадження таких словників-перекладачів обіцяє революцію у вивченні мов і техніці перекладу.

Вимоги до матричного дисплея, використовуваного як екран телевізора, виявляються значно вищими як по швидкодії, так і по числу елементів, чим в описаних вище електронній іграшці і словнику-перекладачі. Це стане зрозумілим, якщо пригадати, що відповідно до телевізійного стандарту зображення на екрані формується з 625 рядків (і приблизно з такого ж числа елементів складається кожен рядок), а час запису одного кадру 40 мс. Тому практична реалізація телевізора з рідкокристалічним екраном виявляється важчим завданням. Проте відомі перші успіхи в технічному рішенні і цього завдання. Так, японська фірма «Соні» налагодила виробництво мініатюрного, такого, що уміщається практично на долоні телевізора з розміром екрану 3,6 дюймів. Вже створені телевізори на РК як з крупнішими екранами, так і з кольоровим зображенням.

Союз мікроелектроніки і рідких кристалів виявляється надзвичайно ефективним не тільки в готовому виробі, але і на стадії виготовлення інтегральних схем. Як відомо, одним з етапів виробництва мікросхем є фотолітографія, яка полягає в нанесенні на поверхню напівпровідникового матеріалу спеціальних масок, а потім у витравлянні за допомогою фотографічної техніки так званих літографічних вікон. Ці вікна в результаті подальшого процесу виробництва перетворяться в елементи і з'єднання мікроелектронної схеми. Від того, наскільки малі розміри відповідних вікон, залежить число елементів схеми, які можуть бути розміщені на одиниці площі напівпровідника, а від точності і якості витравляння вікон залежить якість мікросхеми. Вище вже мовилося про контроль якості готових мікросхем за допомогою холестеричних рідких кристалів, які візуалізують поле температур на працюючій схемі і дозволяють виділити ділянки схеми з аномальним тепловиділенням. Не менш корисним виявилося застосування рідких кристалів (тепер вже нематичних) на стадії контролю якості літографічних робіт. Для цього на напівпровідникову пластину з протравленими літографічними вікнами наноситься орієнтований шар нематика, а потім до неї прикладається електрична напруга. В результаті в поляризованому світлі картина витравлених вікон виразно візуалізується. Більш того, цей метод дозволяє виявити дуже малі за розмірами неточності і дефекти літографічних робіт, 1 протяжність яких всього 0,01 мкм.


  1. Керовані оптичні транспаранти

Розглянемо приклад досягнення наукових досліджень в процесі створення рідкокристалічних екранів, відображення інформації, зокрема рідкокристалічних екранів телевізорів. Відомо, що масове створення великих плоских екранів на рідких кристалах стикається з труднощами не принципового, а чисто технологічного характеру. Хоча принципово можливість створення таких екранів продемонстрована, проте в зв'язку з складністю їх виробництва при сучасній технології їх вартість виявляється дуже високою. Тому виникла ідея створення проекційних пристроїв на рідких кристалах, в яких зображення, отримане на рідкокристалічному екрані малого розміру могло б бути спроектовано в збільшеному вигляді на звичайний екран, подібно до того, як це відбувається в кінотеатрі з кадрами кіноплівки. Виявилось, що такі пристрої можуть бути реалізовані на рідких кристалах, якщо використовувати „сандвічеві” структури, в які разом з шаром рідкого кристала входить шар фотонапівпровідника. Причому запис зображення в рідкому кристалі, здійснюваний за допомогою фотонапівпровідника, проводиться променем світла.

Принцип запису зображення дуже простий. У відсутність підсвічування фотонапівпровідника його провідність дуже мала, тому практично вся різниця потенціалів, подана на електроди оптичного осередку, в який ще додатково введений шар фотонапівпровідника, падає на цьому шарі фотонапівпровідника. При підсвічуванні фотонапівпровідника його провідність різко зростає, оскільки світло створює в нім додаткові носії струму (вільні електрони і дірки). В результаті відбувається перерозподіл електричної напруги в осередку — тепер практично вся напруга падає на рідкокристалічному шарі, і стан шаруючи, зокрема, його оптичні характеристики змінюються відповідно величині поданої напруги. Таким чином змінюються оптичні характеристики рідкокристалічного шару в результаті дії світла. Ясно, що при цьому в принципі може бути використаний будь-який електрооптичний ефект з описаних вище. Практично, звичайно, вибір електрооптичного ефекту в такому сандвічевом пристрої, званому електрооптичним транспарантом, визначається разом з необхідними оптичними характеристиками і чисто технологічними причинами.

Важливо, що в описуваному транспаранті зміна оптичних характеристик рідкокристалічного шару відбувається локально — в точці засвічення фотонапівпровідника. Тому такі транспаранти володіють дуже високою роздільною здатністю. Так, об'єм інформації, що міститься на телевізійному екрані, може бути записаний на транспаранті розмірами менше 1х1 см.

Описаний спосіб запису зображення, крім всього іншого, володіє великими достоїнствами, оскільки він робить непотрібною складну систему комутації, тобто систему підвода електричних сигналів, яка застосовується в матричних екранах на рідких кристалах.[3]


  1. Просторово-часові модулятори світла

Керовані оптичні транспаранти можуть бути використані не тільки як елементи проекційного пристрою, але і виконувати значне число функцій, пов'язаних з перетворенням, зберіганням і обробкою оптичних сигналів. У зв'язку з тенденціями розвитку методів передачі і обробки інформації з використанням оптичних каналів зв'язку, що дозволяють збільшити швидкодію пристроїв і об'єм передаваної інформації, керовані оптичні транспаранти на рідких кристалах представляють значний інтерес і з цієї точки зору. В цьому випадку їх ще прийнято називати просторово-часовими модуляторами світла (ПЧМС), або світловими клапанами. Перспективи і масштаби застосування ПЧМС в пристроях обробки оптичної інформації визначаються тим, наскільки сьогоднішні характеристики оптичних транспарантів можуть бути покращені у бік досягнення максимальної чутливості до випромінювання, що управляє, підвищення швидкодії і просторового дозволу світлових сигналів, а також діапазону довжин хвиль випромінювання, в якому надійно працюють ці пристрої. Як вже наголошувалося, одна з основних проблем — це проблема швидкодії рідкокристалічних елементів, проте вже досягнуті характеристики модуляторів світла дозволяють абсолютно безумовно стверджувати, що вони займуть значне місце в системах обробки оптичної інформації.

При відповідному підборі режиму роботи модулятора вони можуть виділяти контур проектованого на нього зображення. Якщо контур переміщається, то можна візуалізувати його рух. При цьому істотно, що довжина хвилі записуючого зображення випромінювання і прочитуючого випромінювання можуть відрізнятися. Тому модулятори світла дозволяють, наприклад, візуалізувати інфрачервоне випромінювання, або за допомогою видимого світла модулювати пучки інфрачервоного випромінювання, або створювати зображення в інфрачервоному діапазоні довжин хвиль.

роботи модулятори світла можуть виділяти області, піддані нестаціонарному освітленню. У цьому режимі роботи зі всього зображення виділяються, наприклад, світлові крапки, що тільки переміщаються по зображенню, або мерехтливі його ділянки. Модулятори світла можуть використовуватися як підсилювачі яскравості світла. В зв'язку ж з їх високою просторовою роздільною здатністю їх використання виявляється еквівалентним підсилювачу з дуже великим числом каналів. Перераховані функціональні можливості оптичних модуляторів дають Підставу використовувати їх в численних завданнях обробки оптичної інформації, таких як розпізнавання образів, придушення перешкод, спектральний і кореляційний аналіз, інтерферометрія, зокрема запис голограм в реальному масштабі часу, і т.д.[3]


  1. Як зробити стереотелевізор

Як ще одне принадне, несподіване і таке, що стосується практично всіх застосувань рідких кристалів варто назвати ідею створення системи стереотелебачення із застосуванням рідких кристалів. Причому, що представляється особливо принадним, така система «стереотелебачення на рідких кристалах» може бути реалізована ціною дуже простій модифікації телекамери, що передає, і доповненням звичайних телевізійних приймачів спеціальними окулярами, скельця яких забезпечені рідкокристалічними фільтрами.

Ідея цієї системи стереотелебачення надзвичайно проста. Якщо врахувати, що кадр зображення на телеекрані формується порядково, причому так, що спочатку висвічуються непарні рядки, а потім парні, то за допомогою окулярів з рідкокристалічними фільтрами легко зробити так, щоб праве око, наприклад, бачило тільки парні рядки, а лівий — непарні. Для цього досить синхронізувати включення і виключення рідкокристалічних фільтрів, тобто можливість сприймати зображення на екрані поперемінно то одним, то іншим оком, роблячи поперемінно прозорим то одне, то інше скло окулярів з висвіченням парних і непарних рядків.

Тепер абсолютно ясно, яке ускладнення телекамери, що передає, дасть стереоефект телеглядачеві. Треба, щоб телекамера, що передає, була стерео, тобто щоб вона володіла двома об'єктивами, відповідними сприйняттю об'єкту лівим і правим оком людини, парні строчки на екрані формувалися за допомогою правого, а непарні — за допомогою лівого об'єктиву камери, що передає.

Система окулярів з рідкокристалічними фильтрами-затворами, синхронізованими з роботою телевізора, може виявитися непрактичною для масового застосування. Можливо, що більш конкурентоздатною виявиться стереосистема, в якій скло окулярів забезпечені звичайними поляроїдами. При цьому кожне із скелець окулярів пропускає лінійно-поляризоване світло, площина поляризації якого перпендикулярна площині поляризації світла, що пропускається другим склом. Стерео ж ефект в цьому випадку досягається за допомогою рідкокристалічної плівки, нанесеної на екран телевізора і проникної від парних рядків світло однієї лінійної поляризації, а від непарних — іншої лінійної поляризації, перпендикулярної до першої.[2]


  1. Окуляри для космонавтів

Знайомлячись раніше з маскою для електрозварника, а зараз з окулярами для стереотелебачення, відмітили, що в цих пристроях керований рідкокристалічний фільтр перекриває відразу все поле зору одного або обох очей. Тим часом існують ситуації, коли не можна перекривати все поле зору людини і в той же час необхідно перекрити окремі ділянки поля зору.

Наприклад, така необхідність може виникнути у космонавтів в умовах їх роботи в космосі при надзвичайно яскравому сонячному освітленні, не ослабленому ні атмосферою, ні хмарністю. Це завдання як у разі маски для електрозварника або окулярів для стереотелебачення дозволяють вирішити керовані рідкокристалічні фільтри.

Ускладнення окулярів в цьому випадку полягає в тому, що поле зору кожного ока тепер повинен перекривати не один фільтр, а декілька незалежно керованих фільтрів. Наприклад, фільтри можуть бути виконані у вигляді концентричних кілець з центром в центрі скелець окулярів або у вигляді смужок на склі окулярів, кожна з яких при включенні перекриває тільки частину поля зору ока.

Такі окуляри можуть бути корисні не тільки космонавтам, але і людям інших професій, робота яких може бути пов'язана не тільки з яскравим нерозсіяним освітленням, але і з необхідністю сприймати великий об'єм зорової інформації.

Наприклад, в кабіні пілота сучасного літака величезна кількість панелей приладів. Проте не всі з них потрібно пілотові одночасно. Тому використання пілотом окулярів, що обмежують поле зору, може бути корисним і таким, що полегшує його роботу, оскільки допомагає зосереджувати його увагу тільки на частини потрібних в даний момент приладів і усуває відволікаючий вплив не потрібної у цей момент інформації. Звичайно, у разі пілота можна піти і по іншому шляху — поставить РК-фільтри на індикатори приладів, щоб мати можливість екранувати їх показники.

Подібні окуляри будуть дуже корисні також в біомедичних дослідженнях роботи оператора, пов'язаної із сприйняттям великої кількості зорової інформації. В результаті таких досліджень можна виявити швидкість реакції оператора на зорові сигнали, визначити найбільш важкі і утомливі етапи в його роботі і зрештою знайти спосіб оптимальної організації його роботи. Останнє означає визначити якнайкращий спосіб розташування панелей приладів, тип індикаторів приладів, колір і характер сигналів різного ступеня важливості і т.д.

Фільтри подібного типу і індикатори на рідких кристалах, поза сумнівом, знайдуть (і вже знаходять) широке застосування в кіно-, фотоапаратурі. У цих цілях вони привабливі тим, що для управління ними потрібна нікчемна кількість енергії, а у ряді випадків дозволяють виключити з апаратури деталі, що здійснюють механічні рухи. А як відомо, механічні системи часто виявляються найбільш громіздкими і ненадійними.

Які механічні деталі кіно-, фотоапаратури мається на увазі? Це перш за все діафрагми, фільтри — ослаблювачі світлового потоку, нарешті, переривники світлового потоку в кінознімальній камері, синхронізовані з переміщенням фотоплівки і що забезпечують покадрове її експонування.

Принципи пристрою таких РК-елементів ясні з попереднього. Як переривники і фільтри-ослаблювачі природно використовувати РК-осередки, в яких під дією електричного сигналу змінюється пропускання світла за всією їх площею. Для діафрагм без механічних частин — системи осередків у вигляді концентричних кілець, яких можуть під дією електричного сигналу змінювати площу проникного світло прозорого вікна. Слід також відзначити, що шаруваті структури, що містять рідкий кристал і фотонапівпровідник, тобто елементи типу керованих оптичних транспарантів, можуть бути використані не тільки як індикатори, наприклад, експозиції, але і для автоматичної установки діафрагми в кіно-, фотоапаратурі.

При всій принциповій простоті обговорюваних пристроїв їх широке впровадження в масову продукцію залежить від ряду технологічних питань, пов'язаних із забезпеченням тривалого терміну роботи Рк-елементів, їх роботи в широкому температурному інтервалі, нарешті, конкуренція з традиційними і сталими технічними рішеннями і т.д. Проте вирішення всіх цих проблем — це тільки питання часу, і скоро, напевно, важко буде собі уявити довершений фотоапарат, що не містить РК-пристрою.[1]


  1. Рідкокристалічний дисплей

Через 80 років після відкриття такого стану речовини, як рідкий кристал дві незалежні одна від одної групи вчених із RCA Labs і Kent (Юта) створили перший рідкокристалічний дисплей на основі узагальнення результатів впливу на кристали електричними зарядами. Спочатку рідкокристалічні екрани використовувалися в годинниках. До 1984-го вдалося поліпшити розрізнювальну здатність рідких кристалів, що дозволило передавати зображення, а не тільки текст. З’явилися ноутбуки, переносні комп’ютери.

ВИСНОВКИ

Тепер відомо понад десять тисяч органічних сполук, які є рідкими кристалами. До них належать мило, віруси, білок в ядрі клітини, сполуки холестерину та інших стероїдів, антоціан у листі капусти. ДНК, мозок тощо.

Дотепер вивчено понад 3000 речовин, що утворюють рідкі кристали. До них належать речовини біологічного походження, наприклад, дезоксирибонуклеїнова кислота, що несе код спадкової інформації, і речовина мозку. Подальші дослідження цих речовин не тільки розширять їх застосування в техніці, але й допоможуть проникнути в таємниці біологічних процесів.

Рідкі кристали широко застосовуються в малогабаритних електронних годинниках, моніторах, калькуляторах, вимірювальних приладах як індикатори і табло для відображення відповідної інформації. В комбінуванні з фото чутливими напівпровідниковими шарами рідкі кристали застосовуються як підсилювачі і перетворювачі зображень, а також як пристрої оптичної обробки інформації.

ЛІТЕРАТУРА


  1. Белиловский В.Д. Эти удивительные кристаллы: Кн. для внекл. чтения учащихся 8-10 кл. сред. шк. – М.: Просвещение, 1987.

  2. Блинов Л.М., Пикин С.А. жидкокристаллическое состояние вещества. – М.: Знание, 1986. – 64 с. – (Новое в жизни, науке. технике. Сер. «Физика»; №6)

  3. Дущенко В.П., Кучерук І.М. загальна фізика і термодинаміка: Навч. посібник. – 2-ге вид., перероб. і допов. – К.: Вища шк., 1993 (С. 386-389).

  4. Кучерук І.М., Горбачук І.Т., Луцик П.П. Механіка. Молекулярна фізика і термодинаміка. загальний курс фізики. Том 1 (С. 481-485).

  5. Матвеев А.Н. Молекулярная физика: Учеб. пособие для вузов. – М.: Высшая школа, 1981 (С. 281-284).

  6. Пикин С.А., Блинов Л.М. Жидкие кристаллы /Под ред. Л.Г.Асламазова.- М.: Наука. главная редакция физико-математической литературы, 1982. – 208 с.- (Библиотечка «Квант». Вып. 20)

скачати

© Усі права захищені
написати до нас