Ім'я файлу: РЕФЕРАТ.docx
Розширення: docx
Розмір: 206кб.
Дата: 11.05.2022
скачати
Пов'язані файли:
ПРОТОКОЛ-зразок.docx

План

1.Вступ.

2.Класифікація шуму.

3. Дія на організм людини.

4. Основні поняття і їх фізичні параметри

5.Шум і мікроклімат як екологічні фактори.

а)Виробничий шум.;

б) Шум і мікроклімат як екологічні фактори.

6. Нормування шуму і вібрації

7. Вимірювання шуму і вібрації

8. Методи боротьби з шумом і вібрацією

9. Захист від дії ультразвуку, інфразвуку

10. Захист від лазерних випромінювань

11.Висновок

12.Список літератури



Вступ

У сучасному світі в умовах науково-технічного прогресу шум став одним із суттєвих несприятливих чинників, що впливають на людину. Ріст потужностей сучасного устаткування, машин, побутової техніки, швидкий розвиток усіх видів транспорту призвели до того, що людина на виробництві та в побуті постійно знаходиться під впливом шумів досить високої інтенсивності. Шум — це будь-який небажаний звук, якій наносить шкоду здоров’ю людини, знижує його працездатність, а також може сприяти отриманню травми в наслідок зниження сприйняття попереджувальних сигналів. З фізичної точки зору — це хвильові коливання пружного середовища, що поширюються з певної швидкістю в газоподібній, рідкій або твердій фазі. Шум буває: механічного походження, який виникає внаслідок вібрації при роботі механізмів та устаткування, а також поодиноких чи періодичних ударів у з'єднаннях деталей та конструкцій; аеродинамічного походження, який виникає при подачі газу чи повітря по трубопроводах, вентиляційних системах, або їх стравлюванні в атмосферу; гідродинамічного походження, який виникає внаслідок процесів, що відбуваються у рідинах (гідравлічні удари, кавітація, турбулентність потоку); електромагнітного походження, який виникає внаслідок коливання елементів електромеханічних пристроїв під впливом змінних магнітних полів. Шум у виробничих умовах негативно впливає на працівника: послаблює увагу, посилює розвиток втоми, сповільнює реакцію на небезпеку. Внаслідок цього знижується працездатність та підвищується імовірність нещасних випадків. Тому питання боротьби з шумом на сьогоднішній день є актуальним майже для всіх галузей виробництва.















Класифікація


За походженням шуми бувають

  • аеродинамічного походження — шум, що виникає у газах;

  • гідродинамічного походження — шум, що виникає у рідинах;

  • електромагнітного походження — шум, що виникає внаслідок коливань елементів електромеханічних пристроїв під впливом магнітних змінних сил;

  • механічного походження — шум, що виникає внаслідок вібрацій поверхонь машин та обладнання, а також ударів у з'єднаннях деталей, збірних одиниць або конструкцій у цілому.

За частотною характеристикою шуми звукового діапазону частот поділяються на:

  • низькочастотний (<400 Гц);

  • средньочастотний (400—1000 Гц);

  • високочастотний (>1000 Гц).

В деяких галузях техніки, зокрема в електроніці та акустиці існує абстрактне поняття кольору шуму, що приписує шумовому сигналу певний колір виходячи з його статистичних властивостей. Однією з таких властивостей, за допомогою якої можна розрізняти види шуму, може бути спектральна густина (розподіл потужності за частотами). Прийнято розрізняти такі різновиди шумів за кольорами: білий шум, рожевий шум, червоний (коричневий) шум та сірий шум. Іноді виділяють й інші різновиди.

За санітарними нормами шум класифікується так:

  • за характером спектра — широкосмуговий з безперервним спектром більш як одна октава і тональний, у спектрі якого спостерігаються значні дискретні тони;

  • за характеристикою часу — постійний, рівень звуку якого за восьмигодинний робочий день змінюється щонайбільше на 5 дБ, і непостійний, рівень звуку якого за робочий день такої самої тривалості змінюється більш як на 5 дБ.

Непостійний шум, у свою чергу, поділяється на:

  • коливний, рівень звуку якого безперервно змінюється;

  • переривчастий, рівень звуку якого східчасте змінюється (на 5 дБ і більше), причому тривалість інтервалів, протягом яких рівень звуку залишається постійним, становить 1 с і більше;

  • імпульсний, що складається з одного або кількох звукових сигналів, кожний тривалістю менше 1 с.

За санітарними нормами 80 дБ — допустимий рівень шуму на постійних робочих місцях у виробничих приміщеннях і на території підприємства.

Виробничий шум

Любий небажаний для людини звук, робить негативний вплив на здоров'я і працездатність.

Як фізичне явищ звук - механічні коливання упругого середовища, яке сприймається людським вухом в інтервалі частот 16 - 20 000 Гц. До 16 Гц - инфразвукові коливання; понад 20 000 Гц - ультразвук.

Параметри шуму.

  • частота f, Гц

  • звуковий тиск Р, Па - перемінна складового атмосферного тиску, що виникає при звуковій хвилі.

Інтенсивність (сила звука) J, Вт/м - енергія стерпна хвилею в одиницю часу віднесена до поверхні.


Дія на організм людини

Шум — одна з форм фізичного (хвильового) забруднення навколишнього середовища. Під шумом розуміють усі неприємні та небажані звуки чи їхню сукупність, які заважають нормально працювати, сприймати інформаційні звукові сигнали, відпочивати. Він виникає внаслідок стиснення і розрідження повітряних мас, тобто коливних змін тиску повітря. Розрізняють шум постійний, непостійний, коливний, переривчастий, імпульсний. Загалом шум — це хаотичне нагромадження звуків різної частоти, сили, висоти, тривалості, які виходять за межі звукового комфорту. Нині добре відомо, що шуми шкідливо впливають на здоров'я людей, знижують їхню працездатність, викликають захворювання органів слуху (глухоту), ендокринної, нервової, серцево-судинної систем (гіпертонія). Фізіолого-біологічна адаптація людини до шуму практично неможлива, тому регулювання і обмеження шумового забруднення довкілля — важливий і обов'язковий захід.

Шум і вібрацію на виробництві створюють різні механізми і машини (ДВЗ, компресори, насоси, вентилятори, молоти, металоріжучі верстати, електродвигуни, трансформатори, генератори і ін.).

Шкідлива дія вібрацій виражається в зниженні ККД, спрацюванні деталей, частому ремонті і наладці машин, а також небезпеці виникнення аварій машин. За статистикою близько 80% поломок і аварій є результатом недопустимих коливань. Крім того, шум і вібрація несприятливо впливають на людину. Шум не лише негативно діє на слух, але і може викликати розлади сердечно-судинної і нервової систем, травного тракту, а також гіпертонічні хвороби. Шум є однією з причин швидкого стомлення робітників, може викликати запаморочення, що призводить до нещасних випадків. Від постійної дії шуму з'являються професійна хвороба – глухота.

У тижневику «За кордоном» в статті «Децибели, що забирають здоров'я» наголошується, що втрата слуху є найпоширенішим фізичним недоліком в країні, стверджує канадське товариство слуху, а промисловий шум складає його основну причину. За повідомленням міністерства охорони здоров'я, близько двох мільйонів канадців погано чують. Глухота «урожає більшу кількість людей, ніж рак, сліпота, туберкульоз, склероз, венеричні хвороби і ниркова недостатність, разом узяті».

Шум діє не лише на слух. В першу чергу, він розладжує нервову систему. Це було виявлено ще дві тисячі років назад, коли Юлій Цезар заборонив в Римі їзду вночі на гуркотливих колісницях. Чотириста років тому королева Єлизавета I заборонила чоловікам бити своїх дружин після 10 годин вечора, «щоб їх крики не непокоїли сусідів».

Шум може бути причиною виразки шлунку, викликає підвищення рівня холестерину в крові, сприяє виникненню стресового стану, скорочує життя людини. Звук зумера в автомобілі, який попереджує про те, що не застебнуті паси безпеки, служить причиною різкого підвищення тиску крові; гудіння кухонних машин погіршує травлення.

Американські вчені довгий час вели спостереження за ростом квітів при шумі і в тиші. Виявилось, що шум уповільнює їх ріст на 47%. Одна з рослин було піддано звуковому «обстрілу» в 10 децибел (по силі – це шум рухаючого поблизу поїзда). Через десять днів квітка зів’яла. Сильного шуму не витримують навіть ті, кому чути і говорити природою не дано.

В 1239 г. татарське військо, увірвавшись до Таврії, підійшло до столиці Аланського феодального князівства Киркер. Узяти фортецю вони не могли, т. до. вона мала дуже гарні укріплення (висічені в скелях печери, невидимі сторонньому оку). Атакуючі вирішили взяти фортецю шумом. Кожен воїн стукав в будь-який металевий предмет протягом декількох днів і ночей. Коли розвідники донесли, що жителі, змучені шумом, заснули, орди завойовників зі свіжих підкріплень, що не брали участі в операції «шум», проникли в печери.

У древньому Китаї найстрашнішими тортурами вважали тортури музикою. Людину садили до ями, над головою ревли труби і гуділи барабани. І в'язень або зізнавався, або божеволів.

У медицині встановлено, що шкідлива для здоров'я межа гучності, больовий поріг – 90 дБ, тривалий звук в 155 дБ викликає опіки, гучність в 180 дБ – смертельна (рис. 1).



Рис. 1. Шкала сили звуку (дБ)

Рок і дискоритми можуть порушити функціональну рівновагу півкуль головного мозку. Вони сприяють виділенню стрес-гормонів, які можуть «стирати» в мозку частина інформації

Вібрація від устаткування передається через конструкцію і підлогу до людини і викликає загальну вібрацію його тіла. Особливо шкідливими є коливання з частотою 6-9 Гц, близькою до частоти коливань людини. Резонанс, що виникає, збільшує коливання внутрішніх органів, розширюючи або звужуючи їх. Систематична дія вібрації викликає вібраційну хворобу з втратою працездатності. Ця хвороба виникає поступово, викликаючи головний біль, роздратування, поганий сон, з’являється біль у суглобах, судоми пальців, спазми судин. У організмі виникають незворотні зміни, що призводять до інвалідності.

На пристосування до сильного шуму організм людини витрачає велику кількість енергії, перенапружується нервова система, виникають втома, нервовий і психічний розлади.

Особливо важко переносяться раптові різкі високочастотні звуки. При рівні шуму понад 80 дБА послаблюється слух, виникають нервово-психічні захворювання, виразка шлунку, гіпертонія, підвищується агресивність. Дуже сильний шум (понад 110 дБА) призводить до так званого шумового сп'яніння, а потім — до руйнування тканин тіла, перш за все — слухового апарату. Жінки більш чутливі до дії сильного шуму, і у них за умов звукового дискомфорту виникають ознаки неврастенії.

Розрізняють два види нормування виробничого шуму: санітарно-гігієнічне і технічне. Перше регулює рівень шуму з огляду його дії на організм людини. Норматив житлово-побутового шуму — 40 дБА вдень, 30 дБА — вночі. Технічне нормування стандартизує існуючі або очікувані шумові характеристики устаткування об'єкта. Друге повинне забезпечити вимоги першого. Вухо людини звукові хвилі частотою нижче 16 Гц сприймає не як звук, а як вібрацію. Вібрації — це тремтіння або струси всього тіла чи окремих його частив під час різних робіт (бетоноукладання, роботи в шахтах з відбійним молотком, розпилювання матеріалів тощо). Тривалі вібрації завдають великої шкоди здоров'ю — від сильної втоми й не дуже значних змін багатьох функцій організму до струсу мозку, розриву тканин, порушення серцевої діяльності, нервової системи, деформації м'язів і клітин, порушення чутливості шкіри, кровообігу тощо.

Чинними нормативами передбачається гранично допустимий рівень звуку — 85 дБ. Рівень звукового тиску на частотах 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц не повинен перевищувати відповідно 99, 92, 86, 83, 80, 78,76, 74 дБ. Нормується також вібраційна швидкість, яка на частотах 16, 32, 63, 250 Гц повинна відповідати 0,0015, 0,0022, 0,0027, 0,0035 м/с. При тривалості дії вібрації не більше 20 % робочого часу допускається збільшення вібраційної швидкості в 1,5 рази.

Основні поняття і їх фізичні параметри

Шум – безладне поєднання різноманітних за рівнем і частотою небажаних звуків. Вухо людини сприймає коливання з частотою від 20 до 20000 Гц, коливання нижче 20 Гц – інфразвук, вище 20 кГц – ультразвук. Звуковий діапазон прийнято підрозділяти:

– низькочастотний (до 400 Гц);

– середньочастотний (400-1000 Гц);

– високочастотний (більш 1000 Гц).

Фізично звук характеризується частотою, інтенсивністю, звуковим тиском. Вухо чутливе до звукового тиску. За одиницю звукового тиску прийнятий паскаль (Па).

Звук характеризується інтенсивністю (силою) – потік звукової енергії через одиницю площі, Вт/м2 . Найменша інтенсивність звуку, яку чує вухо, називається порогом чутності: Jmin = 10-12 Вт/м2 при f = 1000 Гц. Найбільша інтенсивність звуку, яка сприймається на слух, створює відчуття болю – больовий поріг Jmax =102 Вт/м2 . У діапазоні від порогу чутності до больового порогу сила звуку збільшується в 1014 раз.

Такий величезний діапазон доступний нам завдяки здатності вуха реагувати не на абсолютну інтенсивність звуку, а на її приріст, і називається він рівнем інтенсивності звуку . Рівень інтенсивності звуку L – це логарифм відношення, що розглядається J, і на порозі чутності Jmin сил звуку, вимірюється в дБ:

,(1)

де J – інтенсивність даного звуку, Вт/м2 ;

Jmin – інтенсивність на порозі чутності, Вт/м2 .

В ГОСТ 12.1.003-83 наводяться допустимі рівні звукового тиску. Зв'язок рівня інтенсивності звуку і звукового тиску виражається формулою:



(2)

де P – звуковий тиск даного звуку, Па;

Pmin – звуковий тиск на порозі чутності; Pmin = 2×10-5 Па на частоті 1000Гц.

Вібрація – механічне коливання пружних тіл при низьких частотах (3-100 Гц) з великими амплітудами (0,5-0,003 мм). Фізично вібрація характеризується частотою, амплітудою, швидкістю, прискоренням. Ці ж параметри враховуються для гігієнічної оцінки вібрацій.

Шум і мікроклімат як екологічні фактори.

А)Виробничий шум.

Здатність слухового аналізатора сприймати широкий діапазон звукових тисків пояснюється тим, що він вирізняє не різницю, а стислість змін абсолютних величин, які характеризують звук (східчастість сприйняття). Тому вимірювати інтенсивність звуку і звуковий тиск в абсолютних (фізичних) одиницях важко і незручно.

В акустиці для вимірювання інтенсивності звуків або шуму застосовують спеціальну систему, яка враховує логарифмічну залежність між подразненням і слуховим сприйняттям, — шкалу бел і децибел. Вона відповідає фізіологічному сприйняттю і уможливлює різке скорочення діапазону значень вимірюваних величин. За цією шкалою кожний наступний ступінь звукової енергії перевищує попередній у 10 разів.

Наприклад, якщо інтенсивність звуку більша у 10,100, 1000 разів, то за логарифмічною шкалою вона відповідає збільшенню на 1, 2, З одиниці. Логарифмічна одиниця, яка відбиває десятиразовий ступінь збільшення інтенсивності звуку над рівнем моря, називається белом (Б), тобто є десятковим логарифмом відношення інтенсивностей звуків.

Отже, при вимірюванні інтенсивності звуків використовують не абсолютні величини звукової енергії або тиску, а відносні, які виражають відношення енергії або тиску звуку до порогових для слуху значень енергії або тиску. Діапазон енергії, який сприймається слухом як звук, становить 13-14 Б. Для зручності використовують не бел, а одиницю, що в 10 разів менша — децибел (дБ). Децибел приблизно відповідає мінімальному приросту інтенсивності звуку, який розрізняє вухо. Вимірювані в такий спосіб величини називаються рівнями інтенсивності звуку, або рівнями звукового тиску.

Інтенсивність звуку суб'єктивно відчувається як гучність. Характеристика шуму в децибелах не дає повного уявлення про його гучність. Це залежить від різної чутливості вуха до різних акустичних частот. Звуки однієї інтенсивності, але різних частот сприймаються на слух як неоднаково гучні.

Слуховий аналізатор по-різному сприймає різні частоти. При рівнях інтенсивності звуку до 70 дБ максимальна чутливість слухового аналізатора становить 1-5 кГц і зменшується з підвищенням і зниженням частоти. Тому звуки (тони) однакової інтенсивності на різних частотах здаються на слух різними за гучністю. При великих рівнях інтенсивності (80 дБ і вище) із збільшенням інтенсивності звуку вухо реагує майже однаково на звуки різних частот чутного діапазону.

Б)Шум і мікроклімат як екологічні фактори

Шум як професійний фактор спостерігається у промисловості, на транспорті, у сільському господарстві тощо. З кожним роком збільшується кількість професій, пов'язаних із шумом, а зростаюча спеціалізація праці веде до збільшення тривалості його впливу на людину.

     

У машинобудуванні високий рівень шуму спостерігається при обробці металів різанням. Найвищий рівень шуму — у цехах холодного висаджування (101-105 дБ), цвяхівних (104-110 дБ), полірування швів (115-117 дБ), токарно-револьверних (84-88 дБ), фрезерних верстатів (93-95 дБ). На робочих місцях ковалів-штампувальників рівень шуму становить 110-115 дБ. Інтенсивний шум з'являється при обрубуванні та очищенні лиття, роботі пневматичних трамбівок, вибивних решіток тощо.

У гірничорудній і вугільній промисловості шум, що утворюється відбійними молотками, за рівнем інтенсивності досягає 92-109 дБ, під час роботи пневматичних перфораторів — 114-127 дБ. У текстильній промисловості найвищий рівень шуму у ткацьких цехах (94-104 дБ), на робочих місцях швачок-мотористок швейних фабрик він становить 90-95 дБ.

Вплив шуму на організм людини часто посилюється й іншими виробничими факторами: вібрацією, інфра- і ультразвуком, несприятливим мікрокліматом, токсичними речовинами, випромінюванням тощо. На сучасному виробництві шум часто є причиною зниження рівня працездатності, підвищення рівня загальної і професійної захворюваності, частоти виробничих травм.

Шум як стрес-фактор є загальнобіологічним подразником, який негативно впливає на всі органи і системи організму. У разі тривалого систематичного впливу шуму може виникнути патологія з переважним ураженням слуху, центральної нервової і серцево-судинної систем. В основі змін лежить складний механізм нервово-рефлекторних і нейрогуморальних порушень, які можуть призвести до порушення регуляторних процесів з боку центральної нервової системи.

Вплив шуму на організм умовно поділяють на специфічний, що викликає зміни в органі слуху, і неспецифічний, який викликає зміни в інших органах і системах. Шум є однією з найчастіших причин зниження слуху нейросенсорного характеру, приглухуватості — поширеного виду патології.

Шум як звуковий подразник впливає не лише на слуховий аналізатор, а й на інші органи, зокрема переддверно-завитковий. Це відбувається внаслідок того, що потік акустичної енергії великої інтенсивності викликає коливання рідини не тільки у завитку, а й у переддвер'ї і напівкруглих каналах.

Тривалий шум через провідні шляхи слухового аналізатора впливає на відділи головного мозку, порушуючи процеси вищої нервової діяльності людини. Спостерігаються зміни функціонального стану нервової системи у вигляді астенічних реакцій та астено-вегетативного синдрому з характерними скаргами на головний біль, швидку стомлюваність, подразливість, порушення сну, загальне нездужання, зниження працездатності тощо.

У працівників з невеликим стажем роботи зміни з боку нервової системи спостерігаються частіше, ніж у слуховому аналізаторі. У них з'являється головний біль, апатія, підвищуються стомлюваність, подразливість.

У працівників із стажем роботи 10 років і більше ці зміни посилюються, виявляються стійкі ознаки астено-вегетативного синдрому за гіпертонічним, гіпотонічним і кардіальним типами. В окремих випадках спостерігаються зміни психомоторної працездатності, емоційної сфери і розумової діяльності працівників, сповільнюється швидкість психічних реакцій, послаблюється пам'ять, знижується темп розумової праці, її якість і продуктивність; порушуються концентрація уваги, точність і координація рухів; змінюються секреторна і моторна функції травного каналу; порушується обмін речовин (основний, білковий, вуглеводний, жировий, електролітний тощо); змінюється функціональний стан серцево-судинної системи.

Ступінь вираженості гіпертензивної дії шуму і порушень гемодинаміки залежить від інтенсивності, тривалості, спектра дії, а також від індивідуальних особливостей людини і супутніх факторів виробничого середовища.

Нормування шуму

З метою нормування діапазон розбивається на октавні смуги: f1, f2, f3, f4. У кожній смузі знаходяться fср.

Нормованою характеристикою шуму є рівень звукового тиску L, тому що самий звуковий тиск і інтенсивність змінюються в широких межах і їх нормувати неможливо. Також людське вухо підпорядковується закону Вебера - Фехнера: принцип відносності сприйняття шуму людиною. Поширено частотний метод аналізу шуму. Гігієнічне нормування шуму і вібрацій визначає ДСН 3.3.6.039-99, ГОСТ 12.1.003-83 і ГОСТ 12.1.012-90, СН 245-73. При нормуванні шуму використовується два методи:

– нормування по граничному спектру шуму;

– нормування рівня звуку в дБА.

Перший метод нормування є основним для постійних шумів. Тут нормуються рівні звукових тисків в 8 октавних смугах частот з середньо-геометричними частотами 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц. Деякі граничні спектри показані на рис. 2., з якого видно, що із зростанням частоти допустимі рівні зменшуються. Наприклад: ПС-80, де 80 – допустимий рівень звукового тиску в октавній смузі з середньо-геометричною частотою 1000 Гц. Сукупність 8 допустимих рівнів звукового тиску називається граничним спектром.



Рис. 2. Криві граничних спектрів

Другий метод нормування загального рівня шуму, що вимірюється за шкалою «А» шумоміра і зветься рівнем звуку в дБА, використовується для орієнтовної оцінки постійного і непостійного шуму, оскільки в цьому випадку ми не знаємо спектру шуму. Рівень звуку (дБА) пов'язаний з граничним спектром залежністю:

LA = ПС + 5.

Згідно ГОСТ 12.1.012-90, гранично допустимим параметром вібрації на робочому місці залежно від частоти є: швидкість коливань, амплітуда переміщень, що виникла при роботі устаткування і передається на сидінні, робочий майданчик в зоні робочого місця – це санітарно-гігієнічне нормування. Технічне нормування за СН626-66 – «Санітарні норми і правила при роботі з інструментами, механізмами і обладнанням, що створюють вібрації, які передаються на руки робітників»

Методи і засоби захисту від шуму

Захист від шуму досягається розробкою шумобезпечної техніки, застосуванням засобів і методів індивідуального і колективного захисту, будівельно-акустичними методами. Засоби колективного захисту діляться стосовно джерела шуму: понижуючі шум у джерелі виникнення (найбільше ефективно); понижуючі шум на шляхах його поширення. По способу реалізації:

Акустичні - ґрунтуються на акустичному вимірі помешкання і за принципом дії підбираються засоби звукоізоляції, звукопоглинання, віброізоляція, демпфірування, застосування глушників шуму.

Будівельно-акустичні методи застосовують: екрани, звукоізоляцію, кабіни спостереження, дистанційне керування, кожухи, ущільнення і т. д. Найбільше ефективні звукоізолюючі матеріали: трипласт (композиційний матеріал); пластобетони з наповненням з опилок деревини, соломи і т. д. Звуковбирні матеріали: мармур, бетон, граніт, цеглина, ДВП, ДСП, войлок, мінераловата, матеріали з щілинною перфорацією.

Архітектурно-планувальні: раціональне розміщення робочих місць; раціональний режим праці і відпочинку. Організаційно-технічні.

Активна форма захисту - генерація шуму в противофазі до джерела. Засоби індивідуально захисту: навушники, вушні вкладки, шлемофони, каски.

 Вимірювання шуму і вібрації

Основним приладом для вимірювання шуму є шумомір, який складається з:

– мікрофону;

– підсилювача;

– фільтрів;

– випрямляча;

– стрілочного приладу в дБ.

У шумомірі є вихід для аналізатора спектру шуму, який дозволяє визначити рівень звукового тиску в октавних смугах частот. Для вимірювання шуму використовують:

– вітчизняні прилади Ш-70, прилад ИШВ-1, ШУМ-1М, ШМ-1, ШВК-1, ШВК-М;

– зарубіжні акустичні комплекти фірм RFT (ГДР) і «Брюль та Кьер» (Данія).

Для оцінки вібрації використовують прилад ИШВ-1, прилад НВА-1, ШВК-1, а також апаратуру фірм RFT і «Брюль та Кьер». Для вимірювання шуму і вібрацій використовується пересувна лабораторія «Віброшум

Переміщення точки або механічної системи при якому відбувається почергове зростання й убування в часу значень хоча б однієї координати.

Причиною порушення вібрації є виникаючі при роботі машин неурівноважені силові впливи: ударні навантаження; зворотно-поступальні переміщення; дисбаланс. Причиною дисбалансу є: неоднорідність матеріалу; розбіжність центрів мас і осей обертання; деформація.

Біологічний вплив вібрації

Вібрація - загальнобіологічний шкідливий чинник, що призводить до фахових захворювань - віброзахворюваннь, лікування котрих можливо тільки на ранніх стадіях. Хвороба супроводжується стійкими порушеннями в організмі людини (опорно-руховий апарат, необоротні зміни в кістках і суглобах, зсуви в черевній порожнині, нервово-психічній сфері). Людина частково або цілком утрачає працездатність.

По способу передачі на людину вібрація підрозділяється на загальну і локальну.

Загальна - діє через опорні поверхні ніг на весь організм у цілому.

Локальна - на окремі ділянки тіла.

Загальну поділяють по характері передачі на:

  • транспортну (при прямуванні машин);

  • транспортно-технологічну (при виконанні роботи машиною прямування: кран, бульдозер);

  • технологічну (при роботі механізмів і людина знаходиться поруч).

Параметри вібрації:

  • Частота, Гц. Людина є замкнутою системою з частотою коливань 5-9 Гц. Якщо підвести зовнішні коливання з тієї ж частотою - резонанс: повне припинення роботи серця.

  • Амплітуда А, м.

  • Середнє квадратичне значення віброскорості Vt, м/с.

  • Середнє квадратичне віброприскорення wt, м/с.

  • Відносний показник віброскорості Lv, Дб.

  • Відносний показник віброприскорення Lw, Дб.

Нормування вібрацій

Нормативними характеристиками, що служать для оцінки впливу вібрацій на людину є:

Середньоквадратичні значення віброшвидкості і віброприскорення та їхні показники. Понад 10 Гц - нормуються Vt і wt. Менше 10 - Lw Lv.

По способу передачі на людину вібрація вимірюється в 3 ортогональних осях: x, y, z. Нормування здійснюється в різних інтервалах частот:

  • Для загальної вібрації - 2, 4, 8, 16, 31.5, 63 Гц

  • Для локальної - 8, 16, 31.5, 63, 125, 250, 500, 1000 Г



 Методи боротьби з шумом і вібрацією

Основними методами боротьби з виробничим шумом і вібрацією є:

– зменшення шуму в джерелі;

– звукопоглинання і вібропоглинання;

– звукоізоляція і віброізоляція;

– акустична обробка приміщень;

– зменшення шуму на шляху його поширення;

– раціональне планування підприємства і цехів;

– установка глушників шуму;

– вживання засобів індивідуального захисту.

Шум виникає внаслідок пружних коливань як машини в цілому, так і окремих її деталей. Причини виникнення цих коливань:

– механічні;

– аеродинамічні;

– гідродинамічні;

– електроявища.

У зв'язку з цим розрізняють шуми:

– механічні;

– аеродинамічні;

– гідродинамічні;

– електромагнітного походження.

Основним джерелом механічного шуму є:

– підшипники кочення;

– зубчасті передачі;

– неврівноважені обертаючі частини машин.

Зменшення механічного шуму може бути досягнуте шляхом вдосконалення технологічних процесів і устаткування:

– заміна ударних процесів і механізмів безударними, наприклад, застосування устаткування з гідроприводом замість устаткування з кривошипними і ексцентриковими приводами; штампування – пресуванням, клепку – зваркою, обрубування – різанням;

– заміна зворотно-поступального руху – обертальними рухами, застосування замість прямозубих шестерень – косозубих і шевронних, підвищення класу точності обробки, заміна зубчастих і ланцюгових передач – клинопасовими, що дає зниження шуму на 10-14 дБ;

– заміна підшипників кочення на ковзання, зниження шуму на 10-15 дБ;

– заміна металевих деталей на пластмасові – 10-12 дБ зниження шуму;

– застосування примусового змазування поверхонь, що труться;

– балансування обертальних елементів машин.

Основні джерела шуму верстатів можна розділити на 5 груп:

1. Зубчасті передачі – головного і допоміжного руху, коробки передач.

2. Гідравлічні агрегати.

3. Електродвигуни.

4. Напрямні труби токарних автоматів.

5. Інше різання.

Крім того, джерелом шуму є:

– підшипники;

– пасові передачі;

– кулачкові механізми;

– дискові муфти.

Насоси і електродвигуни повинні вмонтовуватися на віброізоляторах. На дільницях токарних автоматів джерелом шуму є удари оброблюваного прутка по стінках напрямних труб. Розроблена велика кількість конструкцій малошумних напрямних труб.

Найефективнішим методом зниження шуму при обробці металів різанням є оснащення верстата рухливими кожухами, що герметично закривають зону різання. Звичайні кожухи виготовляються з листового заліза, призначені вони лише для захисту оператора від попадання емульсії і стружки. Звукоізолюючий кожух складається з 2-х шарів листового заліза, між якими знаходиться демпфуючий матеріал. Місця контакту кожуха ущільнені вібропоглинальним матеріалом.

Кожухи і обгороджування на верстаті, призначені для усунення випадкового контакту людини з рухливим механізмом, необхідно виконувати герметичними, стінки мають бути багатошаровими або мати демпфуюче покриття.

Рівні сил виробничих шумів (в дБ):

– обдирочний верстат95-105;

– токарний верстат93-96;

– стругальний верстат97;

– ковальський цех98;

– штампувальний цех112;

– клепальний цех117;

– реактивний двигун до 130 (больовий поріг людини);

– ракетний двигун до 170.

Аеродинамічні шуми є головною складовою шуму вентиляторів, повітродувок, компресорів, газових турбін, випусків пари і повітря в атмосферу, двигунів внутрішнього згорання і ін. У двигуні внутрішнього згорання основним джерелом шуму є шум систем випуску і впуску. Аеродинамічний шум в джерелі може бути понижений збільшенням зазору між вінцями лопаток, підбором співвідношення чисел направляючих і робочих лопаток; поліпшенням аеродинамічних характеристик припливної частини компресорів, турбін і тому подібне Часто заходи з ослаблення аеродинамічних шумів в джерелі бувають недостатніми, тому застосовується звукоізоляція джерел і установка глушників.

Гідродинамічні шуми виникають внаслідок:

– стаціонарних процесів;

– нестаціонарних процесів в рідинах (кавітація, турбулентність потоку, гідравлічний удар).

Заходи боротьби:

– поліпшення гідродинамічних характеристик насосів;

– вибір оптимальних режимів роботи;

– при гідроударах – правильне проектування і експлуатація гідросистеми.

Електромагнітні шуми виникають в електромашинах і устаткуванні. Причини – взаємодія феромагнітних мас під впливом змінних магнітних полів.

Заходи захисту:

– конструктивні зміни в електромашинах, наприклад, виготовлення скошених пазів якоря ротора;

– у трансформаторах – щільніше пресування пакетів, використання демпфуючих матеріалів.

Інтенсивний шум, викликаний вібрацією, можна зменшити покриттям вібруючої поверхні матеріалом з великим внутрішнім тертям (гума, азбест, бітум), при цьому частина звукової енергії поглинається. Процес поглинання звуку відбувається за рахунок переходу енергії коливаючи частинок повітря в теплоту внаслідок втрат на тертя в порах матеріалу. Найчастіше як звукопоглинальна облицьовка застосовується конструкція у вигляді шару однорідного пористого матеріалу певної товщини, укріпленого безпосередньо на поверхні обгороджування або віднесеного від нього на деяку відстань (рис. 3.).



Рис. 3. Звукопоглинальна облицьовка 1 – стіна (стеля); 2 – звукопоглинальний матеріал; 3 – захисна оболонка; 4 – захисний перфорований шар; 5 – повітряний проміжок

Якщо стіни приміщення виконані прозоро або площа вільної поверхні недостатня для встановлення плоскої звукопоглинальної облицьовки, для зменшення шуму застосовують об'ємні штучні звукопоглиначі (мал. 4.). Це об'ємні тіла, заповнені звукопоглинальним матеріалом і підвішені до стелі рівномірно по приміщенню на певній висоті.



Рис. 4. Об'ємні штучні звукопоглиначі

В даний час застосовуються звукопоглинальні матеріали:

– ультратонке волокно;

– скловолокно;

– капронове волокно;

– мінеральна вата;

– дерево-волоконні плити;

– пористий полівінілхлорид.

Звукоізоляція – це метод зниження шуму шляхом створення конструкцій, що перешкоджають поширенню шуму з одного в інше ізольоване приміщення.

Звукоізолюючі конструкції виготовляють з щільних твердих матеріалів (метал, дерево, пластмаса), що добре перешкоджають поширенню шуму. Звукоізоляція однорідної перегородки R, дБ може бути визначена за формулою:



(3)

де m – маса 1 м2 перегородки, кг;

f – частота, Гц.

Шумні агрегати можна ізолювати за допомогою звукоізолюючих кожухів, які слід встановлювати без жорстких зв'язків з устаткуванням. Для збільшення ефективності звукоізоляції внутрішню поверхню кожухів облицьовують звукопоглинаючими матеріалами (рис. 5.).



Рис. 5. Звукоізоляція кожухом 1 – джерело шуму; 2 – звукопоглинаючий матеріал; 3 – глушник шуму

Ефективність (звукоізоляція) кожухів визначається за формулою:

 (4)

де a – коефіцієнт звукопоглинальної облицьовки;

R – звукоізоляція однорідної перегородки, дБ.

Звукоізолюючі перегородки і звукопоглинаючі кабіни ефективно знижують лише повітряний шум, але у виробництві часто зустрічається і структурний шум (при роботі вентиляторів, компресорів, ковальських молотів, насосів і ін.). Вібрація цих машин у вигляді пружних хвиль поширюється від фундаментів по конструкції будівлі в усі приміщення, де і проявляється у вигляді шуму. Ослаблення такого шуму досягається віброізоляцією і вібропоглинанням.

Віброізоляція усуває жорсткі зв'язки між неврівноваженими машинами і конструкцією будівлі за рахунок застосування пружних прокладок (пружин, гуми) (рис. 6.).



Рис. 6. Віброізоляція 1 – фундамент; 2 – амортизатори; 3 – електродвигун; 4 – насос-компресор; 5 – вентиль; 6 – пружна прокладка; 7 – кронштейн

Зниження вібрації, що поширюється по трубопроводах вентиляції, досягається влаштуванням розривів в окремих ділянках трубопроводів з установкою в ці ділянки м'яких вставок з брезенту (гуми).

Для захисту працюючих від прямої дії шуму використовують екрани, встановлені між джерелом шуму і робочим місцем (рис. 7.).



Рис. 7. Екранування робочого місця 1 – екран; 2 – звукопоглинаюча облицьовка; 3 – устаткування; 4 – робоче місце

Акустичний ефект екрану заснований на утворенні за ним області тіні, куди звукові хвилі проникають лише частково. Для зменшення шуму аеродинамічних установок і пристроїв застосовують в основному глушники шуму. Вони поділяються на:

– активні;

– реактивні;

– комбіновані.

Активні – поглинають шум, реактивні – відбивають енергію назад до джерела. Екранні глушники встановлюються на виході з каналу в атмосферу або на вході в канал (рис. 8.).



а) б) в)



г) д) е)

Рис. 8. Різновиди екранних глушників

- звукопоглинаючий матеріал;

- металевий лист

На високих частотах ефект їх встановлення досягає 10-25 дБ. Велике значення має відстань від екрану до каналу і діаметр екрану; чим ближче розташований екран і чим більший його діаметр, тим ефективніша його установка. Зниження виробничого шуму може бути досягнуте раціональним плануванням цехів і підприємств. При плануванні підприємства найбільш шумні цехи мають бути сконцентровані в одному-двох місцях. Між шумними цехами і тихими приміщеннями (заводоуправління, конструкторське бюро) мають бути розміщені зелені насадження і дотримуватися необхідна відстань. Всередині будівлі тихі приміщення необхідно розміщувати далеко від шумних, щоб їх розділяло декілька інших приміщень або обгороджувань з ефективною ізоляцією.

Загальні технічні рішення не завжди дозволяють знизити шум і вібрацію до допустимих величин. У цих випадках застосовують індивідуальні захисні засоби. До них відносять:

– вкладиші;

– навушники;

– шлеми.

Вкладиші у вигляді м'яких тампонів з ультратонкого волокна, інколи просочених воском і парафіном, жорсткі вкладиші (ебонітові, гумові) вставляють в слуховий апарат і знижують шум на 5-20 дБ. Широке застосування знайшли «Беруші».

У промисловості широко застосовують навушники ВЦНІЇОТ, що знижують рівень звукового тиску від 7 до 38 дБ. При дії шумів з високими рівнями ((120 дБ) вкладиші і навушники не забезпечать необхідного захисту, оскільки шум діє безпосередньо на мозок людини. У цих випадках застосовують шлеми.

До засобів індивідуального захисту рук від дії вібрації відносяться:

– віброзахисні рукавиці;

прокладки або пластини, забезпечені кріпленнями для рук.

Також необхідне дотримання раціонального режиму праці і виконання гігієнічних заходів: 10 хвилинна перерва після 1 години роботи, гігієнічні ванни для кистей рук, душ після роботи, ультрафіолетове опромінення.
У автоматичних виробництвах мірою боротьби є дистанційне керування (виключає контакт). У неавтоматичних виробництвах:

Зниження вібрації в джерелах їхніх виникнень: підвищення точності опрацювання деталей; оптимізація технологічного процесу; поліпшення балансування.

Відстройка від режимів резонансу (збільшення жорсткості системи); вибродемпфірування (пружинні віброізолятори).

Поліпшення організації праці вібронебезпечних процесів: загальна кількість часу в контакті з віброобладнанням не повинно перевищувати зміни; одноразову дію не повинно перевищувати для локальної - 20 хвилин, для загальної - 40 хвилин.

До лікувально-профілактичних мір відносяться: масаж; заходи, що загально укріплюють; гідропродцедури. Вібрація має властивість кумуляції (накалювання в організмі)

Акустичні - ґрунтуються на акустичному вимірі помешкання і за принципом дії підбираються засоби звукоізоляції, звукопоглинання, віброізоляція, демпфірування, застосування глушників шуму.

Будівельно-акустичні методи застосовують: екрани, звукоізоляцію, кабіни спостереження, дистанційне керування, кожухи, ущільнення і т. д. Найбільше ефективні звукоізолюючі матеріали: трипласт (композиційний матеріал); пластобетони з наповненням з тирси деревини, соломи і т. д. Звуковбирні матеріали: мармур, бетон, граніт, цеглина, ДВП, ДСП, войлок, мінераловата, матеріали з щілинною перфорацією.

Архітектурно-планувальні: раціональне розміщення робочих місць; раціональний режим праці і відпочинку. Організаційно-технічні.

Активна форма захисту - генерація шуму в противофазі до джерела. Засоби індивідуально захисту: навушники, вушні вкладки, шлемофони, каски.

Захист від дії ультразвуку, інфразвуку

У машинобудуванні основним джерелом інфразвуку є:

– ДВЗ;

– реактивні двигуни;

– вентилятори;

– поршневі компресори.

При дії інфразвуку з рівнями 100-120 дБ виникає головний біль, відчутний рух барабанних перетинок, зниження уваги і працездатності, поява почуття страху, порушення функції вестибулярного апарату.

Основні заходи щодо боротьби з інфразвуком:

– підвищення швидкохідності машин, що забезпечує переведення максимального випромінювання в області чутних частот;

– усунення низькочастотних вібрацій;

– установка глушників реактивного типу.

При інфразвуку первинною є боротьба з цим шкідливим виробничим чинником в джерелі його виникнення.

Ультразвук знаходить широке застосування в металообробній промисловості, машинобудуванні, металургії і т. д. Частота застосування ультразвуку більше 20 кГц, потужність – до декількох кіловат. Ультразвук здійснює шкідливу дію на організм людини. В робітників спостерігається порушення нервової системи, зміна тиску, складу і властивості крові. Часті скарги на головний біль, швидку стомлюваність, втрату слухової чутливості.

Відповідно до ГОСТ 12.1.001-83 норми поширюються на рівні звукового тиску, що створюються на робочому місці коливаннями повітряного середовища з частотами більш 11,2 кГц. Допустимі рівні звукового тиску нормуються в третьоктавних смугах частот і мають наступні значення:

– 12,5 кГц – 80 дБ;

– 16 кГц – 90 дБ;

– 20 кГц – 105 дБ;

– 25 і більше – 110 дБ.

Захист від дії ультразвуку забезпечується:

– використанням в устаткуванні вищих робочих частот;

– влаштуванням екранів між устаткуванням і працюючим;

– розміщенням ультразвукових установок в спеціальних приміщеннях, кабінетах;

– дистанційним керуванням, облицюванням окремих приміщень і кабінетів звукопоглинаючими матеріалами;

– організаційно-профілактичними заходами – інструктаж, вибір раціональних режимів праці і відпочинку, застосування засобів індивідуального захисту.

шум ультразвук лазерне випромінювання

Захист від лазерних випромінювань

У промисловості все ширше застосовується лазерна техніка. Робота оптичних квантових генераторів (ОКГ) супроводжується випромінюванням в діапазоні оптичної частини спектру особливо небезпечному для зору, тому що випромінювання видимого діапазону фокусується на поверхні сітківки. За рахунок фокусування щільність потоку потужності на сітківці може бути на декілька порядків вище, ніж на рогівці ока.

При ураженні лазерним випромінюванням можливий також опік шкіри.

В процесі роботи лазерних установок, окрім термічних опіків, мають місце наступні небезпеки:

– висока напруга;

– іонізація повітря і поява озону;

– утворення токсичних речовин при обробці деяких матеріалів;

– надвисокочастотне електромагнітне поле;

– акустичний шум.

Захист від лазерних випромінювань полягає в наступному:

– генератор і лампа накалювання поміщається в світлонепроникну камеру;

– промінь лазера огороджують екраном або передають по світлопроводу;

– лінзи, призми, мішень забезпечують блендами і діафрагмами;

– приміщення всередині і устаткування забарвлюють в темні матові тони;

– штучне освітлення влаштовують комбіноване і не менше за нормоване;

– попереджувальний сигнал про роботу лазерної установки повинен з'являтися не лише поза приміщенням, але і всередині нього.

До індивідуальних засобів захисту відносяться:

– захисні окуляри зі склом синьо-зеленого кольору;

– руки захищають чорними рукавичками, інші частини тіла – звичайним одягом.


Висновок

Захист від шуму досягається розробкою шумобезпечної техніки, застосуванням засобів і методів індивідуального і колективного захисту, будівельно-акустичними методами. Засоби колективного захисту діляться стосовно джерела шуму: понижуючі шум у джерелі виникнення (найбільше ефективно); понижуючі шум на шляхах його поширення. По способу реалізації. Експлуатація різноманітних машин і механізмів у різних галузях промисловості супроводжується виробничим шумом, що різниться інтенсивністю і спектральним складом.

Список використаної літератури

  1. Винокурова Л. Е., Васильчук М. В., Гаман М. В. Основи охорони праці: Підручник. – К., 2001.

  2. Вронський В. А. Прикладная экология. - Учёбное пособие для студентов вузов. - Ростов-на-Дону: - "Феникс", 1996.

  3. Губернский Ю. Д., Килина С. А. Гигиенические основы нормирования факторов среды. - М.:Коммунальная гигиена, 1986.

  4. Данциг Н. М. Гигиена освещения и инсоляции зданий и територии застройки городов. - М.: "БРЭ", 1971.

  5. Дідковський В. С. Шум і вібрація. - К.: Наукова думка, 1989.

  6. Основи загальної екології. - Методичні вказівки і контрольні завдання для студентів Інституту та дистанційного навчання на спеціальності 7.070801 "Екологія та охорона навколишнього середовища". - Київ 2002.

  7. Сытник К. М., Брайтон А. В., Городецкий А. В. Биосфера. Экология. Охрана природы. - Справочное пособие. - Киев: "Наукова думка", 1997.

  8. Физические параметры и способы формирования биопозитивной воздушной среды. - Автореф. дис. на соиск. уч. степ. канд. техн. наук. - Чёрный К. А., Санкт-Петербург, 1999.

  9. Ткачук К. Н., Іванчук Д. Ф. та ін. Довідник по охороні праці на промисловому підприємстві. — К.: Техніка, 1991.

скачати

© Усі права захищені
написати до нас