Ім'я файлу: ref_1476.doc
Розширення: doc
Розмір: 123кб.
Дата: 12.10.2020
скачати
Пов'язані файли:
ref_1366.doc

1. Похідна за напрямом.

Для характеристики зміни скалярного поля в заданому напрямі вводять поняття похідної за напрямом.

Область простору кожній точці М якої поставлено у відповідність значення деякої скалярної величини , називають скалярним полем.

Нехай задано скалярне поле . Візьмемо в ньому точку і проведемо з цієї точки вектор , напрямні косинуси якого .

На векторі на відстані від його початку візьмемо точку . Тоді

.

Обчислимо тепер приріст функції при переході від точки М до точки в напрямі вектора :

.

Якщо існує границя відношення при .то цю границю називають похідною функції u(x;y;z) в точці M(x;y;z) за напрямом вектора і позначають , тобто

.

Виведемо формулу для обчислення похідної за напрямом . припустимо , що функція u(x;y;z) диференційованав точці M. Тоді її повний приріст в цій точці можна записати так:

. де - нескінченно малі функції при .

Оскільки

то

.

Перейшовши до границі при ,дістанемо формулу для обчислення похідної за напрямом

1

З формули 1 випливає .що частинні похідні є окремими випадками похідної за напрямом . Дійсно , якщо збігається із одним із ортів то похідна за напрямом збігається з відповідною частинною похідною. Наприклад, якщо , то , тому

.

Подібно до того як частинні похідні характеризують швидкість зміни функції в напрямі осей координат, так і похідна показує швидкість зміни скалярного поля u(x;y;z) в точці M(x;y;z) за напрямом вектора .

Абсолютна величина похідної відповідає значенню швидкості, а знак похідної визначає характер зміни функції u(x;y;z) в напрямі (зростання чи спадання).

Очевидно, що похідна за напрямом , який протилежний напряму , дорівнює похідній за напрямом , взятій з протилежним знаком .

Справді, при зміні напряму на протилежний кути зміняться на , тому

.

Фізичний зміст цього результату такий: зміна напряму на протилежний не впливає на значення швидкості зміни поля , а тільки на характер зміни поля . Якщо, наприклад, в напрямі поле зростає , то в напрямі воно спадає , і навпаки .

Якщо поле плоске , тобто задається функцією u(x;y), то напрям вектора цілком визначається кутом . Тому поклавши в формулі 1 , дістанемо

.

Приклад:

Знайти похідну функції в точці A(1;2;-1) за напрямом від точки А до точки B(2;4;-3). З'ясувати характер зміни поля в даному напрямі.

Знаходимо вектор і його напрямні косинуси:



Тепер обчислимо значення частинних похідних в точці А:

.

Оскільки , то задана функція в даному напрямі зростає.



з дисципліни: „Вища математика”

Розділ : „Функції багатьох змінних”

на тему:

„Похідна за напрямом. Градієнт.”

План

1.Похідна за напрямом.

Контрольні питання


1.Для чого вводять поняття похідної за напрямом?


2.Що називається скалярним полем?


3.Що називають похідною функції за напрямом?

4.Виведіть формулу для обчислення похідної за напрямом.

5.Чому відповідає абсолютна величина похідної?
скачати

© Усі права захищені
написати до нас