Правила механізм і кінетика коагуляції

[ виправити ] текст може містити помилки, будь ласка перевіряйте перш ніж використовувати.

скачати

Правила коагуляції електролітами. Поріг коагуляції. Правило Шульце-Гарді. Види коагуляції: концентраційна і нейтралізаційних. Коагуляція сумішами електролітів. Явище "неправильні ряди". Механізм і кінетика коагуляції



Коагуляцією називається процес злипання частинок з утворенням великих агрегатів. В результаті коагуляції система втрачає свою седіментація стійкість, так як частинки стають занадто великими і не можуть брати участь в броунівському русі.

Коагуляція є мимовільним процесом, тому що вона призводить до зменшення міжфазної поверхні і, отже, до зменшення вільної поверхневої енергії.

Розрізняють дві стадії коагуляції.

1 стадія - прихована коагуляція. На цій стадії частинки укрупнюються, але ще не втрачають своєї седиментаційних стійкості.

2 стадія - явна коагуляція. На цій стадії частинки втрачають свою седіментація стійкість. Якщо щільність частинок більше щільності дисперсійного середовища, утворюється осад.

Причини коагуляції різноманітні. Навряд чи існує будь-яке зовнішнє вплив, який при достатній інтенсивності не викликало б коагуляцію.

Правила коагуляції:

1. Всі сильні електроліти, додані до золю в достатній кількості, викликають його коагуляцію.

Мінімальна концентрація електроліту, при якій починається коагуляція, називається порогом коагуляції C k.

Іноді замість порога коагуляції використовують величину V K, звану коагулирующей здатністю. Це обсяг золю, який коагулює під дією 1 моля електроліту:

,

тобто чим менше поріг коагуляції, тим більше коагулирующая здатність електроліту.

2. Коагулююча дією володіє не весь електроліт, а тільки той іон, заряд якого збігається за знаком із зарядом противоиона міцели ліофобних золю. Цей іон називають іоном-коагулянтом.

3. Коагулююча здатність іона-коагулянту тим більше, чим більше заряд іона.

Кількісно ця закономірність описується емпіричним правилом Щульц - Гарді:

або .

де a - постійна для даної системи величина;

Z - заряд іона - коагулянту;

- Поріг коагуляції однозарядного, двозарядних, трехзарядного іона-коагулянту.

Правило встановлює, що коагулюють сили іона тим більше, чим більше його валентність. Експериментально встановлено, що іони з вищої валентністю мають значення порога коагуляції нижче, ніж іони з нижчою. Отже, для коагуляції краще брати іони з вищим ступенем окислення. Якщо валентність іонів однакова, то коагулирующая здатність залежить від розмірів і ступеня гідратації іонів. Чим більше радіус іона, тим більше його коагулирующая здатність. За цим правилом складені ліотропні ряди. Органічні іони-коагулянти, як правило, краще коагулюють гідрозолі, ніж неорганічні, т.к. вони легко поляризуються і адсорбуються. З точки зору подвійного електричного шару (ДЕС) вважається, що коагуляція йде в тому випадку, коли z-потенціал> 30 мВ.

Коагулююча здатність іона при однаковому заряді тим більше, чим більше його кристалічний радіус. Причина з одного боку, великою поляризуемости іонів найбільшого радіуса, отже, в їх здатності притягатися поверхнею, що складається з іонів і полярних молекул. З іншого боку, чим більше радіус іона, тим менше, при одній і тій же величині заряду, гідратація іона. Гідратної ж оболонка зменшує електрична взаємодія. Коагулююча здатність органічних іонів більше в порівнянні з неорганічними іонами.

Для однозарядних неорганічних катіонів коагулирующая здатність убуває в наступному порядку:

- Ліотропний ряд.

При збільшенні концентрації іона-коагулянту z - потенціал міцели золю зменшується за абсолютною величиною. Коагуляція може починатися вже тоді, коли z - потенціал знижується до 0,025 - 0, 040 В (а не до нуля).

При коагуляції золю електролітами розрізняють концентраційну і нейтралізаційних коагуляцію.

Концентраційна коагуляція має місце, коли вона відбувається під дією індиферентного електроліту внаслідок стиснення дифузного шару протиіонів і зменшення абсолютного значення z-потенціалу.

Розглянемо концентраційну коагуляцію золю хлориду срібла, стабілізованого нітратом срібла, при введенні в золь нітрату калію.

Формула міцели має вигляд:

.

На рис. 3.1.2.1 показаний графік зміни потенціалу в ДЕС міцели хлориду срібла. Крива 1 відноситься до початкової міцели, крива 2 - після додавання KNO 3 у кількості, що викликає коагуляцію. При додаванні KNO 3 дифузний шар протиіонів стискається, формула міцели набуває вигляду:



На рис. 3.1.2.2 представлені потенційні криві, що характеризують взаємодію частинок в цьому попелі. Z-потенціал вихідної колоїдної частинки позитивний, це створює потенційний бар'єр коагуляції Δ U к = 0 (крива 2 рис. 3.1.2.2). Тому ніщо не заважає колоїдним частинкам зблизитися на таку відстань, де переважають сили тяжіння - відбувається коагуляція. Так як в даному випадку причиною коагуляції є збільшення концентрації протиіонів, вона називається концентраційної коагуляцією.

Для цього випадку теорія дає формулу

де g - поріг коагуляції;

С - константа, слабо залежить від асиметрії електроліту, тобто відношення числа зарядів катіона і аніона;

А - константа;

е - заряд електрона;

e - діелектрична проникність;

Z - заряд коагулюючого іона;

Т - температура.

З рівняння випливає, що значення порогів коагуляції для одно-, двох-, трьох-, чотирьох-зарядних іонів повинні співвідноситися 1 до (1 / 2) 6 к (1 / 3) 6 к (1 / 4) 6 і т.д ., тобто обгрунтовується раніше наданий емпіричне правило Шульце - Гарді.

Нейтралізаційних коагуляція відбувається при додаванні до золю неіндіфферентного електроліту. При цьому потенциалопределяющих іони зв'язуються в малорастворимое з'єднання, що призводить до зменшення абсолютних величин термодинамічного потенціалу, а отже, і z-потенціалу аж до нуля.

Якщо взяти в якості вихідної тільки що розглянутий золь хлориду срібла, то для нейтралізації потенциалопределяющих іонів Ag + в золь необхідно ввести, наприклад, хлорид калію. Після додавання певної кількості цього неіндіфферентного електроліту міцела матиме вигляд:

У системі не буде іонів, здатних адсорбуватися на поверхні частки AgCl, і поверхня стане електронейтральної. При зіткненні таких часток відбувається коагуляція.

Так як причиною коагуляції в даному випадку є нейтралізація потенциалопределяющих іонів, таку коагуляцію називають нейтралізаційних коагуляцією.

Необхідно зазначити, що для повної нейтралізаційних коагуляції неіндіфферентний електроліт повинен бути доданий в строго еквівалентному кількості.

При коагуляції сумішшю електролітів розрізняють два типи процесів:

  • гомокоагуляція

  • гетерокоагуляція

Гомокоагуляція - укрупнення подібних частинок в більший агрегат осаду. Причому в процесі відстоювання дрібні частинки розчиняються, а великі збільшуються за їх рахунок. На цьому грунтується явище активації і перекристалізації. Цей процес описується рівнянням Кельвіна - Томсона:

,

де С ¥ - Розчинність макрочасток;

С - розчинність мікрочастинок;

V м - молярний об'єм;

R - універсальна газова постійна;

T - температура;

r - радіус частинок.

З рівняння випливає, що концентрація навколо маленького радіуса більше, тому дифузія йде від б ó льшей концентрації до меншої.

При другому типі відбувається злиття різнорідних частинок або прилипання частинок дисперсної системи на вводяться в систему чужорідні тіла або поверхні.

Гетерокоагуляція - взаємна коагуляція різнорідних дисперсних систем.

Коагуляція сумішшю електролітів має велике практичне значення, так як навіть при додаванні до золю одного електроліту-коагулянту, насправді коагуляція відбувається, принаймні, під впливом двох електролітів, тому що в системі міститься електроліт-стабілізатор. Крім того, в техніці для коагуляції часто застосовують суміш двох електролітів. Розуміння закономірностей взаємного дії електролітів важливо також при дослідженні впливу біологічно активних іонів на органи і тканини живого організму.


При коагуляції золю сумішшю двох і більше електролітів можливі три випадки (рис. 3.1.2.3). По осі абсцис відкладена концентрації першого електроліту С 1, а C к1 - його поріг коагуляції. Аналогічно по осі ординат відкладена концентрації другого електроліту С 2, а С к2 - його поріг коагуляції.

1. Адитивна дія електролітів (лінія 1 рис. 3.1.2.3). Електроліти діють як би незалежно один від одного, їх сумарна дія складається з впливів кожного з електролітів. Якщо з 1 '- концентрації першого електроліту, то для коагуляції золю концентрації другого електроліту повинна бути рівною з 2'. Адитивність спостерігається зазвичай при подібності коагулирующей здатності обох електролітів.

2. Синергізм дії (лінія 2 рис. 3.1.2.3). Електроліти як би сприяють один одному - для коагуляції їх потрібно менше, ніж потрібно за правилом адитивності (з 2 "<c 2 '). Умови, при яких спостерігається синергізм, сформулювати важко.

3. Антагонізм дії (лінія 3 рис. 3.1.2.3). Електроліти як би протидіють один одному і для коагуляції їх слід додати більше, ніж потрібно за правилом адитивності. Антагонізм спостерігається при великому розходженні в коагулююча дія електролітів.

Існує декілька теорій, що пояснюють явище антагонізму. Однією з його причин може служити хімічна взаємодія між іонами.

Наприклад, для золю AgCl, стабілізованого хлоридом калію, коагулюють дією володіють катіони. Наприклад, великий коагулирующей здатність має четирехзарядний іон торію Th 4 +. Однак якщо взяти для коагуляції суміш Th (NO 3) 4 і K 2 SO 4, то коагулирующая здатність цієї суміші значно менше, ніж окремо взятого Th (NO 3) 4. Пов'язано це з тим, що в результаті хімічної реакції утворюється комплекс:

і замість четирехзарядних іонів Th 4 + в золі перебуватимуть однозарядні катіони K +, коагулююча дія яких значно слабкіше (правило Шульце-Гарді).

Гетероадагуляція - прилипання частинок дисперсної фази до вводиться в систему чужорідної поверхні.

Однією з причин цього явища є адсорбція стабілізатора на цій поверхні. Наприклад: відкладення колоїдних частинок на волокнах при фарбуванні і дробленні.

Для гідрофобних золів як ВМС зазвичай використовують білки, вуглеводи, пектини; для неводних золів - каучуки.

При введенні в колоїдний розчин електролітів, що містять багатовалентні іони з зарядом протилежні заряду частинок, спостерігається явище "неправильні ряди". Воно полягає в тому, що при додаванні до окремих порцій золю все зростаючого його кількості електроліту золь спочатку залишається стійким, потім у певному інтервалі концентрацій відбувається коагуляція; далі золь знову стає стійким і, нарешті, при підвищенні концентрації електроліту знову наступає коагуляція вже остаточна. Подібні явища можуть викликати і великі органічні іони. Пояснюється це тим, що при дуже малих кількостях введеного електроліту іонів недостатньо, щоб коагулювати золь, тобто значення x - потенціалу залишається вище звичного (рис. 3.1.2.4). При великих кількостях електроліту його іони проявляють коагулююча дію. Цей інтервал концентрацій відповідає значенням x - потенціалу частинок від x критичного першого знака до x критичного іншого знака.


При ще більших концентраціях багатовалентні іони перезаряджають колоїдну частинку і золь знову стійкий. У цій зоні x-потенціал знову вище критичного значення, але обернений за знаком часткам вихідного золю. Нарешті, при високому вмісті вихідного електроліту багатовалентні іони знову знижують значення x-потенціалу нижче критичного і знову відбувається остаточна коагуляція.

Підвищення агрегативної стійкості золю шляхом введення в нього високомолекулярного з'єднання (ВМС) називається колоїдної захистом. Відбувається утворення захисної плівки на поверхні золю (гідратної або ВМС), що перешкоджає взаємодії частинок електроліту.

В якості кількісної характеристики коагуляції Зігмонді запропонував використовувати швидкість коагуляції.

Швидкість коагуляції u - це зміна концентрації колоїдних частинок в одиницю часу при постійному обсязі системи.

,

де n - концентрація часток;

t - час.

Знак "-" варто тому, що концентрація часток з часом зменшується, а швидкість завжди позитивна.

Ступінь коагуляції a:

,

де Z - загальна кількість зіткнень часток в одиницю часу; Z еф - число ефективних зіткнень (тобто зіткнень, що призводять до коагуляції) в одиницю часу.

Якщо a = 0, коагуляція не відбувається, колоїдний розчин агрегативно стійкий.

Якщо a = 1, відбувається швидка коагуляція, тобто кожне зіткнення частинок призводить до їх злипання.

Якщо 0 < a <1, спостерігається повільна коагуляція, тобто тільки деякі зіткнення частинок приводять до їх злипання.

Щоб частинки при зіткненні злиплися, а не розлетілися як пружні кулі, повинен бути подоланий потенційний бар'єр коагуляції Δ U к. Отже, коагуляція відбудеться тільки в тому випадку, коли колоїдні частинки будуть мати кінетичної енергією, достатньою дл подолання цього бар'єру. Для збільшення ступеня коагуляції необхідно знижувати потенційний бар'єр. Це може бути досягнуто додаванням до золю електроліту - коагулянту.

Залежність швидкості коагуляції від концентрації електроліту представлена ​​на рис. 3.1.2.5.


На графіку видно три ділянки:

I. .

Отже, кінетична енергія <<Δ U к, (k - постійна Больцмана) - ліофобних золь агрегативно стійкий.

II. , Тобто потенційний бар'єр коагуляції більше, але порівняємо з кінетичної енергією колоїдних частинок, причому зі збільшенням концентрації електроліту - коагулянту він зменшується, а швидкість коагуляції зростає. С км - поріг повільної коагуляції, С кб - поріг швидкої коагуляції. Ця ділянка кривої висловлює залежність:

На цій ділянці відбувається повільна коагуляція.

III.

Кожне зіткнення призводить до злипання частинок - йде швидка коагуляція.

Теорія швидкої коагуляції, розроблена М. Смолуховським в 1916 р., заснована на наступних положеннях.

  1. Розглянута система є монодисперсних, радіус частинок r.

  2. , Тобто всі зіткнення є ефективними.

  3. Розглядаються тільки зіткнення первинних частинок.

  4. Кінетика коагуляції подібна кінетиці бімолекулярний реакції:

,

де k - константа швидкості коагуляції.

Проинтегрируем це рівняння, розділивши змінні:

,

де u 0 - концентрація часток золю в початковий момент часу;

u t - концентрація часток золю в момент часу t.

Для характеристики швидкої коагуляції використовується період коагуляції (період половинного коагуляції) q.

Період коагуляції (q) - це час, через який концентрація колоїдних частинок зменшується в два рази.

При

Відповідно до теорії швидкої коагуляції, константа коагуляції залежить від коефіцієнта дифузії і може бути обчислена за рівнянням

Якщо підставити в це рівняння величину коефіцієнта дифузії, отримаємо:

Таким чином, знаючи в'язкість дисперсійного середовища і температуру, можна обчислити константу швидкості швидкої коагуляції. Теорія Смолуховского неодноразово перевірялася експериментально і отримала блискуче підтвердження, незважаючи на зроблені автором допущення.

Повільна коагуляція пов'язана з неповною ефективністю зіткнень внаслідок існування енергетичного бар'єру. Просте введення величини ступеня коагуляції a у формули теорії Смолуховского не призвело до згоди теорії з досвідом. Більш досконалу теорію повільної коагуляції розробив Н. Фукс. Він ввів в кінетичне рівняння коагуляції множник, що враховує енергетичний бар'єр коагуляції Δ U до:

,

де k КМ - константа швидкості повільної коагуляції;

k КБ - константа швидкості швидкої коагуляції;

Р - стерично фактор;

Δ U до - Потенційний бар'єр коагуляції;

k - постійна Больцмана.

Таким чином, для розрахунку константи швидкості повільної коагуляції необхідно знати потенційний бар'єр коагуляції, величина якого залежить насамперед від z - потенціалу.

Фактор стійкості, або коефіцієнт уповільнення W, показує, у скільки разів константа швидкості повільної коагуляції менше константи швидкості швидкої коагуляції.

,

Слід зазначити п'ять факторів стійкості, серед яких два перших відіграють головну роль.

  1. Електростатичний фактор стійкості.

Він обумовлений наявністю ДЕС і x - потенціалу на поверхні частинок дисперсної фази.

  1. Адсорбційно - сольватний фактор стійкості.

Він обумовлений зниженням поверхневого натягу в результаті взаємодії дисперсійного середовища з часткою дисперсної фази. Цей фактор відіграє помітну роль, коли в якості стабілізаторів використовуються колоїдні ПАР.

  1. Структурно - механічний фактор стійкості.

Він обумовлений тим, що на поверхні частинок дисперсної фази утворюються плівки, що володіють пружністю і механічною міцністю, руйнування яких потребує часу і витрати енергії. Цей фактор стійкості реалізується в тих випадках, коли в якості стабілізаторів використовуються високомолекулярні сполуки (ВМС).

  1. Ентропійний фактор стійкості.

Коагуляція призводить до зменшення числа частинок в системі, отже, до зменшення ентропії S <0), а це призводить до збільшення вільної енергії системи Δ G> 0. Тому система мимовільно прагне відштовхнути частки один від одного і рівномірно (хаотично) розподілити за обсягом системи. Цим обумовлений ентропійний фактор стійкості. Однак число частинок в колоїдному розчині в порівнянні з істинним розчином такою ж масовою концентрації набагато менше, тому роль ентропійного фактора невелика. Але якщо частки стабілізовані речовинами, що володіють довгими гнучкими ланцюгами (ВМС) і тому мають багато конформацій, то при зближенні таких частинок їх захисні шари вступають у взаємодію. Ця взаємодія неодмінно призводить до зменшення числа можливих конформацій, а значить - до зменшення ентропії. Тому система прагне відштовхнути частки один від одного.

  1. Гідродинамічний фактор стійкості.

Йому сприяє збільшення щільності та динамічної в'язкості дисперсійного середовища.

У реальних системах діють, як правило, декілька чинників стійкості. Кожному фактору відповідає специфічний спосіб його нейтралізації. Це ускладнює створення загальної теорії стійкості. Поки існують лише приватні теорії.

Додати в блог або на сайт

Цей текст може містити помилки.

Хімія | Книга
73.6кб. | скачати


Схожі роботи:
Механізм та кінетика екстрагування цільових компонентів з насіння амаранту
Механізм і кінетика перехідних процесів на міжфазних межах електрохімічних перетворювачів
Хімічна кінетика
Хімічна кінетика 2
Кінетика хімічних реакцій
Електрохімія і хімічна кінетика
Хімічна кінетика і рівновага
Кінетика дії ферментів
Аффінность антитіл і кінетика реакцій
© Усі права захищені
написати до нас