Методи шляхового аналізу та їх застосування до систем одночасних рівнянь

[ виправити ] текст може містити помилки, будь ласка перевіряйте перш ніж використовувати.


Нажми чтобы узнать.
скачати

Зміст
Введення
Методи шляхового аналізу та їх застосування до систем одночасних рівнянь
1.Метод Райта шляхового аналізу
2. Основна теорема шляхового аналізу
3. Процедура Саймона-Блейлока
Висновок
Список використаної літератури

Введення
Методи кореляцій і регресій створювалися як методи опису спільних змін двох і більше змінних. Спільні зміни змінних можуть не означати наявності причинних зв'язків між ними. Потреба в причинному поясненні кореляції призвела американського генетика С. Райта до створення методу шляхового аналізу (1910-1920) як одного з різновидів структурного моделювання. Подорожній аналіз грунтується на вивченні всієї структури причинних зв'язків між змінними, тобто на побудові графа зв'язків та ізоморфної йому рекурсивної системи рівнянь. Його основним положенням є те, що оцінки стандартизованих коефіцієнтів рекурсивної системи рівнянь, які інтерпретуються як коефіцієнти впливу (шляхові коефіцієнти), розраховуються на основі коефіцієнтів парної кореляції. Це дозволяє проаналізувати структуру кореляційного зв'язку з точки зору причинності. Кожен коефіцієнт парної кореляції розглядається як міра повного зв'язку двох змінних.
Подорожній аналіз дозволяє розкласти величину цього коефіцієнта на чотири частини.
Таким чином, шляховий аналіз С. Райта, так само як і структурні моделі, дозволив прояснити проблему помилкової кореляції, якою займалися багато видних статистики, починаючи з К. Пірсона (1857-1936).

Методи шляхового аналізу та їх застосування до систем одночасних рівнянь
1. Метод Райта шляхового аналізу
Метод шляхового аналізу (або колійних коефіцієнтів) запропонований у 20-х рр.. XX ст. американським генетиком С. Райтом. Сьогодні цей метод знайшов широке застосування в біометрії побудові соціологічних причинних моделей, але все ще залишається мало знайомим економістам. Основні положення методу зводяться до наступного. Нехай x 1, x 2, ...., x p - Випадкові змінні, виміряні у відповідних одиницях. Основним припущенням методу є припущення про адитивності і лінійності зв'язків між змінними. (1)
Тут x ui - Символ невимірного імпліцитного фактора u i, чинного на х i, і позначає дію на х i всіх змінних, не включених у безліч {x j}; g ij - Деякі константи; g iu - Коефіцієнт впливу x ui на x i.
Будемо називати x j j-й причиною, а х i - наслідком комбінованої дії всіх m-причин. Використання лінійних залежностей між усіма змінними робить р-аналіз спеціальним випадком регресійного аналізу, в якому коефіцієнти регресії інтерпретуються в термінах причинно-наслідкових відносин.
Співвідношення (1) можна записати також у вигляді (2)
де x j - середнє значення j-ї змінної
Без втрати спільності можна допустити, що x iu має нульове середнє і одиничну дисперсію. У стандартизованої формі рівняння (2) буде мати вигляд: (3)
де, S j - стандартне відхилення j-ї змінної.
Тоді p ij = (s j / s i) c ij.
Коефіцієнти c ij є спеціальним типом приватних коефіцієнтів регресії. Коефіцієнт p ij є стандартизованим коефіцієнтом p-регресії. Будемо називати p ij коефіцієнтом впливу (згідно з С. Райту), розуміючи при цьому, що p ij є числова величина, яка вимірює частку стандартного відхилення i-й ендогенної змінної (слідства) з відповідним знаком, яка обумовлена ​​впливом j-й екзогенної змінної (причини) у тому сенсі, що якщо зробити вимір цього впливу при зміні j-ї змінної в тих же умовах, що і в даних спостереженнях і при незмінних інших умовах (включаючи постійний вплив фактора x ij), то отриманий результат буде дорівнює p ij. (4)
У формулі (4) s i .12 ... (j -1) (j +1) ... p. U показує стандартне відхилення i-й змінної з урахуванням впливу змінних від, 1 до (j-1) і від (j +1 ) до p при постійному вплив фактора u.
З даного визначення випливає, що квадрат p-коефіцієнта показує, яка частина загальної варіації слідства визначається j-й причиною. Ця величина являє собою коефіцієнт детермінації: d xij = P 2 ij.
Щодо імпліцитних змінних x ui зауважимо, що фактор x ui, що представляє постійний вплив на слідство x i змінних, не включених явним чином в модель, вважається некоррелірованнимі ні з іншими аналогічними факторами x u, ні з екзогенними змінними (входами або причинами) системи x j.
Входом системи називають змінну x j, при якій її варіація цілком і повністю визначається фактором x uj, т. е. p juj = 1, d juj = 1. Входи системи можуть бути корельовані попарно.
Найпростішим випадком є модель ланки лінійної причинного ланцюга, тобто детермінації слідства y, всього лише однієї змінної - причиною x. Рівняння цієї моделі у формі лінійної регресії матиме вигляд (для стандартизованих змінних): (5)
Систему (5) можна представити у вигляді графа зв'язків (рис.1). Постає питання про оцінку коефіцієнтів p yx, p yu 2. Коефіцієнт кореляції випадкових змінних x і y як перший змішаний момент нормованих випадкових величин визначається співвідношенням
так як cov (x, x) = 1, cov (x, x u) = 0 за умовою про некорельованість імпліцитних факторів. Але, як відомо, в даному окремому випадку r yx = b yx, де b yx - стандартизований коефіцієнт лінійної регресії. Таким чином, p-коефіцієнт (р yx) є стандартизований регресійний коефіцієнт b yx, і його оцінка методом найменших квадратів буде оцінкою ефективності впливу за С. Райту (рис.1 і 2).
Пряма оцінка впливів невимірних факторів х і неможлива, тому її отримують непрямим чином з співвідношень для коефіцієнтів детермінації. У випадку моделі (5) оцінку коефіцієнта p yu 2, можна отримати наступним чином. Співвідношення повної детермінації у вигляді х і u 2 має вигляд: r 2 yy = P 2 yx + P 2 yu 2 = 1,
Звідки p yu 2 = √ 1-p 2 yx = √ 1-b 2 yx = √ 1-r 2 yx.
Узагальнення розглянутої моделі на випадок n-ланкою лінійного ланцюга, а також випадок до незалежних причин x k одного і того ж слідства у можуть бути проведені індуктивно.
Широко поширена структурна модель системи з корельованими входами (випадок безлічі взаємодоповнюючих причин), зображена на рис.2. Для цієї моделі основне рівняння системи записується наступним чином: (6), а кореляція слідства з i-й причиною визначається зі співвідношення (7)
Співвідношення (7) демонструє важливу особливість коефіцієнта впливу Райта - він може бути як більше, так і менше відповідного коефіцієнта кореляції за абсолютною величиною і не збігатися з ним по знаку.
Значення p-коефіцієнта укладені в інтервалі [- ∞, ∞]. Позитивне значення р-коефіцієнта вказує на те, що фактор x j впливає на х i, - таким чином, що при зміні x j в одному напрямку (припустимо, збільшенні) ознака x i, - змінюється в цьому ж напрямку. Негативне значення показує, що х i, і x j змінюються протилежно. Знак коефіцієнта впливу виходить автоматично в результаті рішення системи рівнянь, що зв'язує r ij і p ij. Змістовна інтерпретація коефіцієнтів впливу Райта як показників інтенсивності впливу по дузі графа аналогічна інтерпретації b-коефіцієнтів (як показників порівняльної сили впливу факторів) у звичайних моделях множинної регресії.
Вираз повної детермінації у вигляді безлічі взаімокоррелірованних причин {х j} має вигляд: (8)
Доданок називається показником кореляційної детермінації. Квадрат множинного коефіцієнта кореляції (коефіцієнт множинної детермінації):
Таким чином, метод p-коефіцієнтів дозволяє знайти найкращу оцінку множинної кореляції R 2 y * x 1 ... xk.
Підкреслимо, що попарно кореляція входів в моделі (8) не структурується. Тим часом ця кореляція може бути як наслідком координованого зміни двох різних взаємонезалежні причин - істинної кореляцією, так і брехливою - результатом впливу третьої змінної - загальною для цих двох змінних причини.
Нехай на рис.3 зображено граф моделі, істинність кореляції входів якої знаходиться під питанням. Г. Саймон показав, що якщо кореляція x 1 і x 2 є помилковою у зазначеному сенсі, то приватний коефіцієнт кореляції першого порядку r x 1 x 2 * z де z - загальна для х 1 і х 2 причина - повинен бути рівний нулю.
Справді, для такої моделі (порівняйте граф на ріc.3б з рис.3) будуть справедливі такі відносини:

2. Основна теорема шляхового аналізу
Першим етапом шляхового аналізу є ідентифікація рівнянь системи.
У сучасній економетричної літературі ідентифікація розуміється як структурна специфікація моделі, покликана не тільки визначити значення параметрів, але і виділити одну-єдину підсумкову структурну модель аналізованих даних.
Проблема ідентифікації у системі структурних рівнянь пов'язана з наявністю достатнього числа обмежень, накладених на нього моделлю. Стосовно до p-аналізу - це проблема відповідності між кількістю можливих співвідношень між r ij і p ij і числом p ij.
Інакше кажучи, проблема ідентифікації структурних параметрів - це проблема достатності емпіричних даних для оцінки всіх коефіцієнтів моделі. Необхідною умовою ідентифікації рівняння є відсутність серед лінійних комбінацій залишилися рівнянь, таких, які задовольняли б всім обмеженням моделі, що накладається на досліджуваний рівняння.
Це еквівалентно так званому умові порядку: для того щоб рівняння в системі з т лінійних структурних рівнянь було ідентифікуються, необхідно, щоб в ньому було відсутнє щонайменше т - 1 змінних з т + до змінних, що зустрічаються в моделі. Позначимо через т число ендогенних змінних у моделі, до - число зумовлених змінних, h - Число ендогенних змінних в розглянутому рівнянні, g - Число зумовлених змінних в розглянутому рівнянні. Тоді умова порядку може бути записано у формі т + до - h - G> m - 1 або до - g> h - 1.
Структурний рівняння називається ідентифікованим, якщо воно задовольняє умові порядку; в разі точного рівності рівняння називається точно ідентифікувати, при суворому нерівності - сверхідентіфіціруемим.
Наступним етапом є оцінювання структурних параметрів. Для структурних моделей, побудованих на основі p-коефіцієнтів, оцінка p ij виробляється не методом найменших квадратів, а за допомогою такого прийому. Запишемо рівняння (3) наступним чином: чи інакше (9)
Використовуємо коефіцієнти кореляції між залежною змінною і кожної з пояснюють змінних: (10)
де n-число спостережень.
Підставляючи в (10) замість x i праву частину виразу (10), отримаємо: (11)
У цьому перетворенні враховано, що кореляція u i, з х j за визначенням дорівнює нулю. Якщо врахувати, що r ij = 1, то співвідношення (11), зване основною теоремою шляхового аналізу, можна записати так: (12)
Тут j вказує на пояснює змінну, зв'язок якої з що пояснюється змінної i розкривається у структурній моделі, до пробігає по підмножині всіх змінних, які безпосередньо впливають на i-у зміну (на графі ці вершини зв'язані з вершиною i дугами). Співвідношення (12) справедливо для будь-якої рекурсивної системи.
Подорожній аналіз дозволяє зробити декомпозицію кореляції ції r ij. Введемо поняття «повна (сукупна) зв'язок», «сукупний вплив», «прямий вплив», «непряме вплив». Якщо коефіцієнт кореляції нульового порядку r ij розглядати як вимірювач повного зв'язку двох змінних, то мірою сукупного впливу j-ї змінної на i-у змінну (q ij) буде її частина, яка не залежить ні від загальних для них змінних - причин, ні від кореляції між загальними для j-й і i-й змінних причинами (компоненти помилкової кореляції), ні від наявності не аналізованої в моделі апріорної кореляції зумовлених змінних - входів.
Таким чином, ми можемо розкласти повну зв'язок двох змінних на чотири складові з урахуванням постулованій в моделі асиметрії впливу: на сукупний вплив (причинне вплив) j-ї змінної на i-у, на два компоненти, що вимірюють ефект помилкової кореляції, і на компонент, ще не має загальноприйнятої назви. У свою чергу, сукупний вплив може бути розкладено на дві складові з урахуванням того, яким чином воно здійснюється - безпосередньо або через інші змінні.
Прямий вплив однієї змінної на іншу вимірюється коефіцієнтом p ij; в цьому випадку в ланцюзі між пояснюватиме і що пояснюється змінними немає проміжних ланок. непрямо ное вплив - це вплив тих складових сукупного впливу однієї змінної на іншу, яка утворюється при обліку ефекту передачі впливу за посередництвом змінних, що специфіковані моделі як проміжні ланки у причинному ланцюзі, зв'язує досліджувані змінні. Оскільки будова сукупного впливу цілком залежить від постулованій причинного структури відносин між змінними, то і всі введені вище поняття мають сенс тільки лише по відношенню до причинного моделі з заданим графом зв'язків.
3. Процедура Саймона-Блейлока
Структурні причинні моделі в економетрики та соціології з'єднують теорію об'єкта з емпіричними даними на основі графа зв'язків. Структурні моделі формалізують гіпотези про причинних відносинах. Постає завдання вибору гіпотез, що позначається іноді в економетричної і соціологічній літературі як проблема каузального виводу. Х. Блейлок, вивчаючи це питання як частину загального питання про засоби побудови соціологічних теорій, запропонував формальний прийом, заснований на ідеях Г. Саймона про хибну кореляції і каузальної впорядкованості, іноді званий процедурою Саймона - Блейлока.
Формальне зміст цього підходу полягає в гіпотезі про повністю специфіковану лінійної рекурсивної причинного моделі, оцінці її параметрів, а потім використанні цих значень для відтворення емпіричної кореляційної матриці. Основна ідея процедури - це положення про те, що модель, яка не відтворює емпіричних кореляцій, повинна бути відкинута.
Очевидна доцільність використання процедури Саймона - Блейлока у двох випадках. По-перше, коли відомий причинний пріоритет серед змінних. Якщо в цьому випадку є дві гіпотези, постулює різні причинні ланцюги (структури графа), то, використовуючи процедуру Саймона - Блейлока, можна відтворити емпіричні кореляції і відкинути ту каузальную ланцюг, де неузгодженість занадто велике. Таким чином, ми можемо порівнювати теорії.
Другий ситуацією є випадок з невідомим каузальним пріоритетом серед змінних. Припустимо, що ми маємо набір змінних, для яких не відомий каузальний порядок причина-наслідок, і є дві гіпотези, кожна по-своєму встановлює його, постулюючи відсутність тих чи інших можливих відносин. Описуваний підхід може бути застосований як для порівняння цих теорій, так і для їх відкидання. Зауважимо, що в процедурі порівняння одна модель-гіпотеза може виявитися кращим за інший, але ніколи - правильною. Більш того, якщо одна з гіпотез близька до того, щоб описуватися повної рекурсивної системою, то звичайно вона працює, краще відтворюючи кореляційну матрицю, і, природно, буде вибиратися як більш вдала, навіть якщо вона дуже далека від істини.
Процедура Саймона - Блейлока є формальним прийомом, що створює базис для отвергания гіпотез, але жодним чином не являє собою процедуру для створення нових теорій.
Іншим відомим прийомом є викреслювання зв'язків у надмірно пов'язаному графі з метою вивчення поведінки системи та її елементів в нових умовах. Стійкість системи може означати вірність гіпотези. Рішення про знищення тієї чи іншої зв'язку моделі може бути прийнято або на підставі критерію статистичної значущості, або на підставі довільно встановленого порогового критерію величини коефіцієнта причинного впливу. Перевіркою правильності гіпотез і коректності моделі повинно служити її підтвердження при випробуваннях на контрольних даних.
Використання p-аналізу в соціально-економічних дослідженнях пов'язано з рядом труднощів. Перш за все не завжди можна вважати, що лінійна залежність в стані задовільно відобразити все розмаїття причинно-наслідкових зв'язків у реальних структурах. Крім того, слід враховувати, що р-аналіз розроблений для кількісних змінних. Структурні моделі та шляхової аналіз ілюструють єдність теоретичного (якісного) і формально-математичного (кількісного) підходів. Значимість результатів аналізу визначається в першу чергу правильністю побудови логічного каркаса структурної моделі - максимально пов'язаного графа зв'язків, ізоморфної математичної моделі у вигляді системи рівнянь.

Висновок
У даному рефераті було розглянуто метод Райта, який знайшов широке застосування в біометрії, побудові соціологічних причинних моделей.
Подорожній аналіз можна розділити на кілька етапів.
Першим етапом шляхового аналізу є ідентифікація рівнянь системи. Під ідентифікацією розуміється структурна специфікація моделі, покликана виділити одну-єдину підсумкову структурну модель аналізованих даних.
Наступним етапом є оцінювання структурних параметрів.
Структурні причинні моделі в економетрики та соціології з'єднують теорію об'єкта з емпіричними даними на основі графа зв'язків. Структурні моделі формалізують гіпотези про причинних відносинах. Постає завдання вибору гіпотез, що позначається іноді в економетричної і соціологічній літературі як проблема каузального виводу. Х. Блейлок, вивчаючи це питання як частину загального питання про засоби побудови соціологічних теорій, запропонував формальний прийом, заснований на ідеях Г. Саймона про хибну кореляції і каузальної впорядкованості, іноді званий процедурою Саймона - Блейлока.
Формальне зміст цього підходу полягає в гіпотезі про повністю специфіковану лінійної рекурсивної причинного моделі, оцінці її параметрів, а потім використанні цих значень для відтворення емпіричної кореляційної матриці. Основна ідея процедури - це положення про те, що модель, яка не відтворює емпіричних кореляцій, повинна бути відкинута.
Подорожній аналіз Райта дозволив прояснити проблему помилкової кореляції, якою займалися багато статистики.

Використана література
1. Айвазян С.А., Мхітарян В.С. Прикладна статистика і основи економетрики. - М.: ЮНИТИ, 1998
2. Дубров А.М., Мхітарян В.С., Трошин Л.І. Багатовимірні статистичні методи .- М.: Фінанси і статистика, 1998
3. Єлісєєва І.І.. -М: Фінанси і статистика, 2001
4. Ферстер Е., Ренц Б. Методи кореляційного та регресійного аналізу .- М.: Фінанси і статистика, 1983
Додати в блог або на сайт

Цей текст може містити помилки.

Економіко-математичне моделювання | Реферат
36.5кб. | скачати


Схожі роботи:
Застосування систем лінійних рівнянь для апроксимації експериментальних даних
Методи рішення систем лінійних рівнянь
Рішення систем лінійних алгебраїчних рівнянь прямі методи
Чисельні методи розв`язання систем лінійних рівнянь
Прямі методи розв`язання систем лінійних алгебраїчних рівнянь
Ітераційні методи розв`язання систем лінійних алгебраїчних рівнянь
Точні методи розв`язання систем лінійних алгебраїчних рівнянь СЛАР
Методи вивчення і аналізу існуючих систем управління
Рішення систем диференціальних рівнянь
© Усі права захищені
написати до нас
Рейтинг@Mail.ru